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4.3. ELECTRON DIFFRACTION

Table 4.3.4.2. Plasmon energies measured (and calculated) for a few simple metals; most data have been extracted from Raether

(1980)
Monovalent Divalent Trivalent Tetravalent
haw, (V) haw, (V) haw, (V) haw, (V)

Meas. Calc. Meas. Calc. Meas. Calc. Meas. Calc.
Li 7.1 (8.0) Be 18.7 (18.4) B 22.7 ? C 34.0 @31)
Na 5.7 5.9 Mg 10.4 (10.9) Al 14.95 (15.8) Si 16.5 (16.6)
K 3.7 4.3) Ca 8.8 (8.0) Ga 13.8 (14.5) Ge 16.0 (15.6)
Rb 34 (3.9 Sr 8.0 (7.0) In 11.4 (12.5) Sn 13.7 (14.3)
Cs 2.9 (3.4) Ba 7.2 6.7) Sc 14.0 (12.9) Pb (13) (13.5)

solution, reproduced in Fig. 4.3.4.11, is due to Castaing &
Henry (1962). It consists of a double magnetic prism and a
concave electrostatic mirror biased at the potential of the
microscope cathode. The system possesses two pairs of
stigmatic points that may coincide with a diffraction plane
and an image plane of the electron-microscope column. One of
these sets of points is achromatic and can be used for image
filtering. The other is strongly chromatic and is used for
spectrum analysis. Zanchi, Sevely & Jouffrey (1977) and Rose
& Plies (1974) have proposed replacing this system, which
requires an extra source of high voltage for the mirror, by a
purely magnetic equivalent device. Several solutions, known as
the o and w filters, with three or four magnets, have thus been
built, both on very high voltage microscopes (Zanchi, Perez &
Sevely, 1975) and on more conventional ones (Krahl &
Herrmann, 1980), the latest version now being available from
one EM manufacturer (Zeiss EM S12).

4.3.4.2.3. Detection systems

The final important component in EELS is the detector that
measures the electron flux in the dispersion plane of the
spectrometer and transfers it through a suitable interface to the
data storage device for further computer processing. Until about
1990, all systems were operated in a sequential acquisition
mode. The dispersed beam was scanned in front of a narrow slit
located in the spectrometer dispersion plane. Electrons were then
generally recorded by a combination of scintillator and
photomultiplier capable of single electron counting.

Qo
So
. Thermoelectric
90° prism _ cooler
Photodiode
array
Q1 Q2 Q3 YAG
Fibre-optic
window

Fig. 4.3.4.12. A commercial EELS spectrometer designed for parallel
detection on a photodiode array. The family of quadrupoles controls
the dispersion on the detector level [courtesy of Krivanek er al.
(1987))].

This process is, however, highly inefficient: while the counts
are measured in one channel, all information concerning the
other channels is lost. These requirements for improved
detection efficiency have led to the consideration of possible
solutions for parallel detection of the EELS spectrum. They use a
multiarray of detectors, the position, the size and the number of
which have to be adapted to the spectral distribution delivered by
the spectrometer. In most cases with magnetic type devices,
auxiliary electron optics has to be introduced between the
spectrometer and the detector so that the dispersion matches the
size of the individual detection cells. Different systems have
been proposed and tested for recording media, the most widely
used solutions at present being the photodiode and the charge-
coupled diode arrays described by Shuman & Kruit (1985),
Krivanek, Ahn & Keeney (1987), Strauss, Naday, Sherman &
Zaluzec (1987), Egerton & Crozier (1987), Berger & McMullan
(1989), etc. Fig. 4.3.4.12 shows a device, now commercially
available from Gatan, that is made of a convenient combination
of these different components. This progress in detection has led
to significant improvements in many areas of EELS: enhanced
detection limits, reduced beam damage in sensitive materials,
data of improved quality in terms of both SNR and resolution,
and access to time-resolved spectroscopy at the ms time scale
(chronospectra). Several of these important consequences are
illustrated in the following sections.

4.3.4.3. Excitation spectrum of valence electrons

Most inelastic interaction of fast incident electrons is with
outer atomic shells in atoms, or in solids with valence electrons
(referred to as conduction electrons in metals). These involve
excitations in the 0-50eV range, but, in a few cases, interband
transitions from low-binding-energy shells may also contribute.

4.3.4.3.1. Volume plasmons

The basic concept introduced by the many-body theory in the
interacting free electron gas is the volume plasmon. In a
condensed material, the assembly of loosely bound electrons
behaves as a plasma in which collective oscillations can be
induced by a fast external charged particle. These eigenmodes,
known as volume plasmons, are longitudinal charge-density
fluctuations around the average bulk density in the plasma
n = 10%® e~ /m?). Their eigen frequency is given, in the free

electron gas, as
12
(n ez) |
w,=—] .
(2
me,

The corresponding 7w, energy, measured in an energy-loss
spectrum (see the famous example of the plasmon in aluminium

(4.3.4.8)
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4. PRODUCTION AND PROPERTIES OF RADIATIONS

Table 4.3.4.3. Experimental and theoretical values for the

Table 4.3.4.4. Comparison of measured and calculated values

coefficient o in the plasmon dispersion curve together with  for the halfwidth AE;,,(0) of the plasmon line (from Raether,
1

estimates of the cut-off wavevector (from Raether, 1980)

Measured o Calculated o q. A
Li 0.24 0.35 0.9
Na 0.24 0.32 0.8
K 0.14 0.29 0.8
Mg 035 0.39 1.0
Al 02 (<0.5A™)
0.45 (>0.5 10\_1) 0.43 1.3
In 0.40 (<0.5 A~
0.66 (>0.5 A1)
Si 0.41
0.3 0.45 1.1

in Fig. 4.3.4.3), is the plasmon energy, for which typical values
in a selection of pure solid elements are gathered in Table
4.3.4.2. The accuracies of the measured values depend on
several instrumental parameters. Moreover, they are sensitive to
the specimen crystalline state and to its degree of purity.
Consequently, there exist slight discrepancies between published
values. Numbers listed in Table 4.3.4.2 must therefore be
accepted with a 0.1eV confidence. Some specific cases require
comments: amorphous boron, when prepared by vacuum
evaporation, is not a well defined specimen. Carbon exists in
several allotropic varieties. The selection of the diamond type in
the table is made for direct comparison with the other tetravalent
specimens (Si, Ge, Sn). The results for lead (Pb) are still subject
to confirmation. The volumic mass density is an important factor
(through n) in governing the value of the plasmon energy. It
varies with temperature and may be different in the crystal, in
the amorphous, and in the liquid phases. In simple metals, the
amorphous state is generally less dense than the crystalline one,
so that its plasmon energy shifts to lower energies.

The above description applies only to very small scattering
vectors . In fact, the plasmon energy increases with scattering
angle (and with momentum transfer Zq). This dependence is
known as the dispersion relation, in which two distinct
behaviours can be described:

(a) For small momentum transfers (¢ < ¢q.), the dispersion
curve is parabolic:

2

h
m%@)zh%ﬂn+%7q? (4.3.4.9)
0

The coefficient o has been measured in a number of substances
and calculated for the free-electron case in the random phase
approximation (Lindhard, 1954); see Table 4.3.4.3 for some
data. A simple expression for « is

EF
hw,(0)’

=3 (4.3.4.10)

where E, is the Fermi energy of the electron gas. More
detailed observations indicated that it is not possible to
describe the dispersion curve over a large momentum range
with a single ¢*> law. In fact, one has to fit the experiment data
with different linear or quadratic slopes as a function of g [see
values indicated for Al and In in Table 4.3.4.3, and
Hohberger, Otto & Petri (1975)]. Moreover, anisotropy has
been found along different ¢ directions in monocrystals
(Manzke, 1980). In parallel, refinements have been brought
into the calculations by including band-structure effects to deal
with the anisotropy of the dispersion relation and with the

80)
Experimental (eV) Theory (eV)
Li 2.2 2.55
Na 0.3 0.12
K 0.25 0.15
Rb 0.6 0.64
Cs 1.2 0.96
Al 0.53 0.43
Mg 0.7 0.7
Si 3.2 54
Ge 3.1 3.9

bending of the experimental curves. Electron-electron correla-
tions have also been considered, which has slightly improved
the agreement between calculated and measured values of «
(Bross, 1978a, b).

(b) For large momentum transfers, there exists a critical
wavevector ¢g,., which corresponds to a strong decay of the
plasmon mode into single electron-hole pair excitations. This
can be calculated using conservation rules in energy and
momentum, giving

w /5
ha,(0) + o — q2 = ~— (G2 +24.95), 4.3.4.11
p( ) mo q(, 2m0 (qc qc qF) ( )
where g is the Fermi wavevector. A simple approximation is
4. =~ w,/vp, vp being the Fermi velocity. Single pair excitations
can be created by fast incoming electrons in the domain of
scattering conditions contained between the two curves:

hz
AEmax = ﬁ (q2 + 2qu)
0

) (4.3.4.12)

h 2

AEmm - 2m0 (q quF)

shown in Fig. 4.3.4.13. They bracket the curve AE = h2q2/2m0
corresponding to the transfer of energy and momentum to an
isolated free electron. For momentum transfers such as g > q.,
the plasmon mode is heavily damped and it is difficult to
distinguish its own specific behaviour from the electron-hole
continuum. A few studies, e.g. Batson & Silcox (1983), indicate
that the plasmon dispersion curve flattens as it enters the

[
heo |

g A

T
29
Fig. 4.3.4.13. The dispersion curve for the excitation of a plasmon
(curve 1) merges into the continuum of individual electron-hole
excitations (between curves 2 and 4) for a critical wavevector g.. The

intermediate curve (3) corresponds to Compton scattering on a free
electron.
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quasiparticle domain and approaches the centre of the continuum
close to the free-electron curve. However, not only is the scatter
between measurements fairly high, but a satisfactory theory is
not yet available [see Schattschneider (1989) for a compilation of
data on the subject].

Plasmon lifetime is inversely proportional to the energy width
of the plasmon peak AE, ,. Even for Al, with one of the smallest
plasmon energy widths (>~ 0.5eV), the lifetime is very short:
after about five oscillations, their amplitude is reduced to 1/e.
Such a damping demonstrates the strength of the coupling of the
collective modes with other processes. Several mechanisms
compete for plasmon decay:

(a) For small momentum transfer, it is generally attributed to
vertical interband transitions. Table 4.3.4.4, extracted from
Raether (1980), compares a few measured values of AE, ,(0),
with values calculated using band-structure descriptions.

(b) For moderate momentum transfer g, a variation law such
as

AE, ;5(q) = AE, ,(0) + Bg* + O(q") (4.3.4.13)

has been measured. The g dependence of AE,, is mainly
accounted for by non-vertical transitions compatible with the
band structure, the number of these transitions increasing with ¢
(Sturm, 1982). Other mechanisms have also been suggested,
such as phonons, umklapp processes, scattering on surfaces, etc.

(c) For large momentum transfer (i.e. of the order of the
critical wavevector ¢,), the collective modes decay into the
strong electron-hole-pair channels already described giving rise
to a clear increase of the damping for values of g > q..

Within this free-electron-gas description, the differential cross
section for the excitation of bulk plasmons by incident electrons
of velocity v is given by

do AE 1
—2£(0) = - , 43.4.14
de © 2w Nagmyv? 0% + 6% ( )
do
100 t dQ
072
10 do
do
1+ . WS
,/'/ .\\\
/ ~
! . \'\ N
0.1 ‘/'/ ( . ‘\\ .\'
/ /L N &
Nk
1 1 1 ;
— 01 | i 10
0 (mrad) O L 7 0
for Eg = 40 keV o c

Fig. 4.3.4.14. Measured angular dependence of the differential cross
section do/d€2 for the 15eV plasmon loss in Al (dots) compared
with a calculated curve by Ferrell (solid curve) and with a
sharp cut-off approximation at 6, (dashed curved). Also shown
along the scattering angle axis, 6p = characteristic inelastic angle
defined as AE/2E,, 6= median inelastic angle defined by
Ji(do/d2)ds2=1/2 fg"(da/ d£2)d2, and 6 = average inelastic
angle defined by 6 = [6(do/d$2)ds2/[(do/ds2)ds2 [courtesy of
Egerton (1986)].

where N is the density of atoms per volume unit and 6 is the
characteristic inelastic angle defined as AE,/2E, in the
non-relativistic ~ description and as AE,/ ymgv*  {with
y=[1—(*/A)]""?} in the relativistic case. The angular
dependence of the differential cross section for plasmon
scattering is shown in Fig. 4.3.4.14. The integral cross section
up to an angle 8, is

Bo

do, AE, 10g (B /)
— Pl =P =2V R 434.1
o5(Fo) / (d.Q) d Naymyv? (4.3.4.15
0
The total plasmon cross section 1is calculated for

Bo = 6. = q./ky. Converted into mean free path, this becomes

1 AN
A= =D <10g C) (non-relativistic formula);

?" No, 6 g
(4.3.4.16)
and
—1
2 h
A, = aozgjv (l 11 326;:%) (relativistic formula).

(4.3.4.17)

The behaviour of A, as a function of the primary electron energy

is shown in Fig. 4.3.4.15.

4.3.4.3.2. Dielectric description

The description of the bulk plasmon in the free-electron gas
can be extended to any type of condensed material by introducing
the dielectric response function &(q, w), which describes the
frequency and wavevector-dependent polarizability of the
medium; c¢f. Daniels et al (1970). One associates, respectively,
the ¢; and ¢; functions with the propagation of transverse and
longitudinal EM modes through matter. In the small-q limit,
these tend towards the same value:

lim e;(q, w) = lim ,(q, w) = (0, w).
q—0 q—0

As transverse dielectric functions are only used for wavevectors
close to zero, the T and L indices can be omitted so that:

8L(q’ a)) = 8((], w) and 8T(q1 C()) = 8(0» w)

The transverse solution corresponds to the normal propagation of
EM waves in a medium of dielectric coefficient £(0, w), i.e. to

Ap (A)
Aluminium
3000
2000 Carbon
1000
0 500 1000 1500 2000 V(kV)

Fig. 4.3.4.15. Variation of plasmon excitation mean free path A, as a
function of accelerating voltage V in the case of carbon and aluminium
[courtesy of Sevely (1985)].
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2.2
qw—‘; — (0, w) = 0. (4.3.4.18)
For longitudinal fields, the only solution is &(q, w) = 0, which is
basically the dispersion relation for the bulk plasmon.

In the framework of the Maxwell description of wave
propagation in matter, it has been shown by several authors
[see, for instance, Ritchie (1957)] that the transfer of energy
between the beam electron and the electrons in the solid is
governed by the magnitude of the energy-loss function
—Im[1/e(q, )], so that

do ___1 1Im< ! ) (4.3.4.19)
d(AE)d2  N(ema,)* 4 e(q, o))’ R
One can deduce (4.3.4.14) by introducing a § function at energy
loss w, for the energy-loss function:

1 b4

As a consequence of the causality principle, a knowledge of the
energy-loss function —Im[1/e(w)] over the complete frequency
(or energy-loss) range enables one to calculate Re[l/e(w)] by
Kramers-Kronig analysis:

(4.3.4.20)

| 2 7 1 o
Re—=1—--PP [ Im|———+~ | ——— do/, (4.3.421
ee?(a)) b4 / m( s(a)/)> PR ( )
0

where PP denotes the principal part of the integral. For details of
efficient practical evaluation of the above equation, see Johnson
(1975).

The dielectric functions can be easily calculated for simple
descriptions of the electron gas. In the Drude model, i.e. for a
free-electron plasma with a relaxation time t, the dielectric
function at long wavelengths (¢ — 0) is

2
. 1

g(w) = &(w) +igy(w) =1 - w—Z = 1/iwr).
with a)g = ne’/ms,, as above. The behaviour of the different
functions, the real and imaginary terms in ¢, and the energy-loss
function are shown in Fig. 4.3.4.16. The energy-loss term
exhibits a sharp Lorentzian profile centred at @ = w, and of
width 1/7. The narrower and more intense this plasmon peak,
the more the involved valence electrons behave like free
electrons.

In the Lorentz model, i.e. for a gas of bound electrons with
one or several excitation eigenfrequencies w;, the dielectric
function is

2
; 1
glw)=1+ g i

(4.3.4.22)

—_—, 4.3.4.23
mey, W} —a? +iw/T; ( )

where n; denotes the density of electrons oscillating with the
frequency w; and t; is the associated relaxation time. The
characteristic ¢,, ¢,, and —Im(1/¢) behaviours are displayed in
Fig. 4.3.4.17: a typical ‘interband’ transition (in solid-state
terminology) can be revealed as a maximum in the ¢, function,
simultaneous with a ‘plasmon’ mode associated with a maximum
in the energy-loss function and slightly shifted to higher energies
with respect to the annulation conditions of the &, function.

In most practical situations, there coexist a family of ne free
electrons (with plasma frequency w) = nse*/ms;) and one or
several families of n; bound electrons (with eigenfrequencies w;).
The influence of bound electrons is to shift the plasma frequency
towards lower values if w; > w, and to higher values if »; < ®,.

As a special case, in an insulator, ne = 0 and all the electrons
(n; = n) have a binding energy at least equal to the band gap
E, > ho,, giving o) = (E'g/h)2 + ne2./m£0. . '

This description constitutes a satisfactory first step into the
world of real solids with a complex system of valence and
conduction bands between which there is a strong transition rate
of individual electrons under the influence of photon or electron
beams. In optical spectroscopy, for instance, this transition rate,
which governs the absorption coefficient, can be deduced from
the calculation of the factor ¢, as

A
£(0) = 1M 'V (), (4.3.4.24)

where M, is the matrix element for the transition from the
occupied level j in the valence band to the unoccupied level j in
the conduction band, both with the same k value (which means
for a vertical transition). J;; () is the joint density of states

(JDOS) with the energy difference Zw. This formula is also valid

20

€1,€2
T

10

0.81  nefi(ey)
Nest L
0.4} neglim(-1)]
1 1 1
0 5 10 15 20 25

AE (eV)

Fig. 4.3.4.16. Dielectric and optical functions calculated in the
Drude model of a free-electron gas with fw,=16eV and
T=1.64 x 1075, R is the optical reflection coefficient in normal
incidence, i.e. R =[(n— 1) +k3/[(n + 1)* + k2] with n and k the
real and imaginary parts of /e. The effective numbers nq(e,) and
ngr[Im(—1/¢)] are defined in Subsection 4.3.4.5 [courtesy of Daniels
et al. (1970)].
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for small-angle-scattering electron inelastic processes. When
parabolic bands are used to represent, respectively, the upper
part of the valence band and the lower part of the conduction
band in a semiconductor, the dominant JDOS term close to the
onset of the interband transitions takes the form

JDOS o (E — E,)'?, (4.3.4.25)
where E, is the band-gap energy. This concept has been
successfully used by Batson (1987) for the detection of gap
energy variations between the bulk and the vicinity of a single
misfit dislocation in a GaAs specimen. The case of non-vertical
transitions involving integration over k-space has also been
considered (Fink et al., 1984; Fink & Leising, 1986).

4.3.4.3.3. Real solids

The dielectric constants of many solids have been deduced
from a number of methods involving either primary photon or
electron beams. In optical measurements, one obtains the values
of ¢, and &, from a Krakers-Kronig analysis of the optical

20

€1,62
T

10+

0 5 10 15 20 25
AE (eV)

Fig. 4.3.4.17. Same as previous figure, but for a Lorentz model with an
oscillator of eigenfrequency hw, = 10eV and relaxation time
7, = 6.6 x 107'%s superposed on the free-electron term [courtesy of
Daniels et al. (1970)].

absorption and reflection curves, while in electron energy-loss
measurements they are deduced from Kramers—Kronig analysis
of energy-loss functions.

Fig. 4.3.4.18 shows typical behaviours of the dielectric and
energy-loss functions.

(a) For a free-electron metal (Al), the Drude model is a
satisfactory description with a well defined narrow and intense
maximum of Im(—1/¢) corresponding to the collective plasmon
excitation together with typical conditions ¢, ~ &, >~ 0 for this
energy hw,. One also notices a weak interband transition below
2eV.

(b) For transition and noble metals (such as Au), the results
strongly deviate from the free-electron gas function as a
consequence of intense interband transitions originating mostly
from the partially or fully filled d band lying in the vicinity of, or
just below, the Fermi level. There is no clear condition for
satisfying the criterion of plasma excitation (¢ = 0) so that the
collective modes are strongly damped. However, the higher-
lying peak is more generally of a collective nature because it
coincides with the exhaustion of all oscillator strengths for
interband transitions.

(c) Similar arguments can be developed for a semiconductor
(InSb) or an insulator (Xe solid). In the first case, one detects
a few interband transitions at small energies that do not
prevent the occurrence of a pronounced volume plasmon peak
rather similar to the free-electron case. The difference
between the gap and the plasma energy is so great that the
valence electrons behave collectively as an assembly of free
particles. In contrast, for wide gap insulators (alkali halides,
oxides, solid rare gases), a number of peaks are seen, owing
to different interband transitions and exciton peaks. Excitons
are quasi-particles consisting of a conduction-band electron
and a valence-band hole bound to each other by Coloumb
interaction. One observes the existence of a band gap [no
excitation either in &, or in Im(—1/¢) below a given critical
value E,] and again the higher-lying peak is generally of a
rather collective nature.

Cerenkov radiation is emitted when the velocity v of an
electron travelling through a medium exceeds the speed of light
for a particular frequency in this medium. The criterion for
Cerenkov emission is

2
£1(w) > ;"—2 = g2 (4.3.4.26)

In an insulator, &, is positive at low energies and can
considerably exceed unity, so that a ‘radiation peak’ can be
detected in the corresponding energy-loss range (between 2 and
4eV in Si, Ge, III-V compounds, diamond, ...); see Von
Festenberg (1968), Kroger (1970), and Chen & Silcox (1971).
The associated scattering angle, 6~ 1,/4,; ~ 10~rad for
high-energy electrons, is very small and this contribution can
only be detected using a limited forward-scattering angular
acceptance.

In an anisotropic crystal, the dielectric function has the
character of a tensor, so that the energy-loss function is
expressed as

1
Zzgijqiqj
i

Im (4.3.4.27)

If it is transformed to its orthogonal principal axes
(811, €2, €33), and if the q components in this system are
q:, 9>, 95, the above expression simplifies to
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Fig. 4.3.4.18. Dielectric coefficients ¢, &, and Im(—1/¢) from a collection of typical real solids: (a) aluminium [courtesy of Raether (1965)];
(b) gold [courtesy of Wehenkel (1975)]; (¢) InSb [courtesy of Zimmermann (1976)]; (d) solid xenon at ca 5K [courtesy of Keil (1968)].
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1

—_——— 4.3.4.28
D& q; ( )

Im

In a uniaxial crystal, such as a graphite, &;;, = ¢&,, = ¢, and
€33 = & (i.e. parallel to the c axis):

e(qw)=¢, sin? 6 + g cos? 6, (4.3.4.29)
where 6 is the angle between q and the ¢ axis. The spectrum
depends on the direction of q, either parallel or perpendicular to
the ¢ axis, as shown in Fig. 4.3.4.19 from Venghaus (1975).
These experimental conditions may be achieved by tilting the
graphite layer at 45° with respect to the incident axis, and
recording spectra in two directions at 6, with respect to it (see
Fig. 4.3.4.20).

4.3.4.3.4. Surface plasmons

Volume plasmons are longitudinal waves of charge density
propagating through the bulk of the solid. Similarly, three exist
longitudinal waves of charge density travelling along the surface
between two media A and B (one may be a vacuum): these are the
surface plasmons (Kliewer & Fuchs, 1974). Boundary conditions

imply that

&4(w) + eg(w) = 0. (4.3.4.30)
1 4 T T T T T T
_lm[s(w,ﬁ)] A
3 Graphite ,,' ' |
2 /
1
0
1
0
1
0
1t 0=0° ]
@lle)
0 N N n " L 1
0 10 20 30 40
ho (eV)
(@)

The corresponding charge-density fluctuation is contained within
the (x) boundary plane, z being normal to the surface:

o(x,z) > cos(q - X — wr)d(2), (4.3.4.31)

and the associated electrostatic potential oscillates in space and
time as

o(x,z)acos(q - x — wt) exp (—qlz]). (4.3.4.32)

The characteristic energy w; of this surface mode is estimated in

the free electron case as:
In the planar interface case:

wP
W, = —=
V2
(interface metal-vacuum);
w, = %
s 12
(1 +ey) (4.3.4.33)
(interface metal-dielectric of constant ¢,);
2 2 1/2
w. = a)PA + wPB
s 2
(interface metal A-metal B).
In the spherical interface case:
el T T Al T M T v T
12 o 4
10r Graphite
8r Elic 1
4r aur 1
o : 4
-2 V e 1
—4F _
0 10 20 30 , 40
ho (eV)
8" T T T T T T
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Fig. 4.3.4.19. Dielectic functions in graphite derived from energy losses for £ L c (i.e. the electric field vector being in the layer plane) and for E||c
[from Daniels er al. (1970)]. The dashed line represents data extracted from optical reflectivity measurements [from Taft & Philipp (1965)].
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@y
[(21 4+ 1)/0'*

(metal sphere in vacuum - the modes are now quantified
following the / quantum number in spherical geometry);

(a)s)/

(wy), = (4.3.4.34a)

_ “p
QL+ D/ + D)2

(spherical void within metal).
Thin-film geometry:

(4.3.4.34b)

1Eexp ey (_qt)} " (4.3.4.35)

£
(@) —w,,[ oy

(metal layer of thickness ¢ embedded in dielectric films of
constant ;). The two solutions result from the coupling of the
oscillations on the two surfaces, the electric field being
symmetric for the (w,)” mode and antisymmetric for the (w,).

In a real solid, the surface plasmon modes are determined by
the roots of the equation e(w,) = —1 for vacuum coating [or
&(w,) = —e, for dielectric coating].

The probability of surface-loss excitation P; is mostly
governed by the Im{—1/[1 + ¢(w)]} energy-loss function,
which is analogous for surface modes to the bulk
Im{—1/[e(w)]} energy-loss function. In normal incidence, the
differential scattering cross section dP,/d§2 is zero in the
forward direction, reaches a maximum for 6 = 46,/3'/2, and
decreases as 9~ at large angles. In non-normal incidence, the
angular distribution is asymmetrical, goes through a zero value
for momentum transfer /q in a direction perpendicular to the
interface, and the total probability increases as

P(0)

Ps(¢)=m»

(4.3.4.36)
where ¢ is the incidence angle between the primary beam and the
normal to the surface. As a consequence, the probability of
producing one (and several) surface losses increases rapidly for
grazing incidences.

4.3.4.4. Excitation spectrum of core electrons
4.3.4.4.1. Definition and classification of core edges

As for any core-electron spectroscopy, EELS spectroscopy at
higher energy losses mostly deals with the excitation of well
defined atomic electrons. When considering solid specimens,
both initial and final states in the transition are actually
eigenstates in the solid state. However, the initial wavefunction
can be considered as purely atomic for core excitations. As a first
consequence, one can classify these transitions as a function of
the parameters of atomic physics: Z is the atomic number of the
element; n, [, and j = [ + s are the quantum numbers describing
the subshells from which the electron has been excited. The
spectroscopy notation used is shown in Fig. 4.3.4.21. The list of
major transitions is displayed as a function of Z and E, in Fig.
4.3.4.22.

Specimen

Fig. 4.3.4.20. Geometric conditions for investigating the anisotropic
energy-loss function.

Core excitations appear as edges superimposed, from the
threshold energy E, upwards, above a regularly decreasing
background. As explained below, the basic matrix element
governing the probability of transition is similar for optical
absorption spectroscopy and for small-angle-scattering EELS
spectroscopy. Consequently, selection rules for dipole transi-
tions define the dominant transitions to be observed, i.e.

I —1=Al=+1 and j—j=Aj=0,%£1. (43.4.37)

This major rule has important consequences for the edge shapes
to be observed: approximate behaviours are also shown in Fig.
4.3.4.22. A very useful library of core edges can be found in the
EELS atlas (Ahn & Krivanek, 1982), from which we have
selected the family of edges gathered in Fig. 4.3.4.23. They
display the following typical profiles:

(i) K edges for low-Z elements (3 < Z < 14). The carbon K
edge occurring at 284eV is a nice example with a clear
hydrogenic or saw-tooth profile and fine structures on threshold
depending on the local environment (amorphous, graphite,
diamond, organic molecules, ...); see Isaacson (1972a,b).

(ii) L,; edges for medium-Z elements (11 <Z < 45). The
L,; edges exhibit different shapes when the outer occupied
shell changes in nature: a delayed profile is observed as long as
the first vacant d states are located, along the energy scale,
rather above the Fermi level (sulfur case). When these d states
coincide with the first accessible levels, sharp peaks, generally
known as ‘white lines’, appear at threshold (this is the case for
transition elements with the Fermi level inside the d band).
These lines are generally split by the spin-orbit term on the
initial level into 2p*? and 2p'/? (or L, and L,) terms. For
higher-Z elements, the bound d levels are fully occupied, and

Empty continuum

o4,5/;2,{o/1‘ / / //%

Electron state notation:

Jquantum number

/
3d 1/2
\ angular momentum (

Principal quantum number

~——

state (/)
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Fig. 4.3.4.21. Definition of electron shells and transitions involved in
core-loss spectroscopy [from Ahn & Krivanek (1982)].
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