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Large gaps at the dispersion surface are associated with strong
inner reflections — and a strong dynamical effect of two-beam-
like character. The absolute magnitude of the gap - or its
inverse, the extinction distance — can be obtained in different
ways. Early measurements were based on the split of diffraction
spots from a wedge, see Lehmpfuhl (1974), or the corresponding
fringe periods measured in bright- and dark-field micrographs
(Ando, Ichimiya & Uyeda, 1974). The most precise and
applicable large-gap methods are based on the refinement of
the fringe pattern in CBED discs from strong reflections, as
developed by Goodman & Lehmpfuhl (1967) and Voss,
Lehmpfuhl & Smith (1980). In recent years, this technique has
been developed to high perfection by means of filtered CBED
patterns, see Spence & Zuo (1992) and papers referred to
therein. See also Chapter 8.8.

The gap at the dispersion surface can also be obtained directly
from the split observed at the crossing of a weak Kikuchi line
with a strong band. Gjennes & Heier (1971) showed how this
can be used to determine strong low-order reflections. High
voltage may improve the accuracy (Terasaki, Watanabe &
Gjennes, 1979). The sensitivity of the intersecting Kikuchi-line
(IKL) method was further increased by the use of CBED instead
of Kikuchi patterns (Matsuhata, Tomokiyo, Watanabe & Eguchi,
1984; Tafte & Gjonnes, 1985). In a recent development, Hoier,
Bakken, Marthinsen & Holmestad (1993) have measured the
intensity distribution in the CBED discs around such intersec-
tions and have refined the main structure factors involved.

Two-dimensional rocking curves collected by CBED patterns
around the axis of a dense zone are complicated by extensive
many-beam dynamical interactions. The Bristol-Bath group
(Saunders, Bird, Midgley & Vincent, 1994) claim that the
strong dynamic effects can be exploited to yield high sensitivity
in refinement of low-order structure factors. They have also
developed procedures for ab initio structure determination based
on zone-axis patterns (Bird & Saunders, 1992), see Chapter 8.8.

Determination of phase invariants. It has been known for some
time (e.g Kambe, 1957) that the dynamical three-beam case
contains information about phase. As in the X-ray case,
measurement of dynamical effects can be used to determine the
value of triplets (Zuo, Heier & Spence, 1989) and to determine
phase angles to better than one tenth of a degree (Zuo, Spence,
Downs & Mayer, 1993) which is far better than any X-ray
method. Bird (1990) has pointed out that the phase of the
absorption potential may differ from the phase of the real
potential.

Thickness is an important parameter in electron-diffraction
experiments. In structure-factor determination based on CBED
patterns, thickness is often included in the refinement. Thickness
can also be determined directly from profiles connected with
large gaps at the dispersion surface (Goodman & Lehmpfuhl,
1967; Blake, Jostsons, Kelly & Napier, 1978; Glazer, Ramesh,
Hilton & Sarikaya, 1985). The method is based on the outer part
of the fringe profile, which is not so sensitive to the structure
factor. The intensity minimum of the ith fringe in the diffracted
disc occurs at a position corresponding to the excitation error s;
and expressed as

(7 + 1/t =nj, (4.3.7.9)
where #; is a small integer describing the order of the minimum.
This equation can be arranged in two ways for graphic
determination of thickness. The commonest method appears to
be to plot (s;/n;)* against 1/n;> and then determine the thickness
from the intersection with the ordinate axis (Kelly, Jostsons,
Blake & Napier, 1975). Glazer et al. (1985) claim that the

method originally proposed by Ackermann (1948), where s? is
plotted against n; and the thickness is taken from the slope, is
more accurate. In both cases, the outer part of the rocking curve
is emphasized; exact knowledge of the gap is not necessary for a
good determination of thickness, provided the assumption of a
two-beam-like rocking curve is valid.

4.3.8. Crystal structure determination by high-resolution
electron microscopy
(By J. C. H. Spence and J. M. Cowley)

4.3.8.1. Introduction

For the crystallographic study of real materials, high-
resolution electron microscopy (HREM) can provide a great
deal of information that is complementary to that obtainable by
X-ray and neutron diffraction methods. In contrast to the
statistically averaged information that these other methods
provide, the great power of HREM lies in its ability to elucidate
the detailed atomic arrangements of individual defects and the
microcrystalline structure in real crystals. The defects and
inhomogeneities of real crystals frequently exert a controlling
influence on phase-transition mechanisms and more generally on
all the electrical, mechanical, and thermal properties of solids.
The real-space images that HREM provides (such as that shown
in Fig. 4.3.8.1) can give an immediate and dramatic impression
of chemical crystallography processes, unobtainable by other
methods. Their atomic structure is of the utmost importance for
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Fig. 4.3.8.1. Atomic resolution image of a tantalum-doped tungsten
trioxide crystal (pseudo-cubic structure) showing extended crystal-
lographic shear-plane defects (C), pentagonal-column hexagonal-
tunnel (PCHT) defects (T), and metallization of the surface due to
oxygen desorption (JEOL 4000EX, crystal thickness less than 200 A,
400kV, C, = 1mm). Atomic columns are black. [Smith, Bursill &
Wood (1985).]
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an understanding of the properties of real materials. The HREM
method has proven powerful for the determination of the
structure of such defects and of the submicrometre-sized
microcrystals that constitute many polyphase materials.

In summary, HREM should be considered the technique of
choice where a knowledge of microcrystal size, shape or
morphology is required. In addition, it can be used to reveal
the presence of line and planar defects, inclusions, grain
boundaries and phase boundaries, and, in favourable cases, to
determine atomic structure. Surface atomic structure and
reconstruction have also been studied by HREM. However,
meaningful results in this field require accurately controlled
ultra-high-vacuum conditions. The determination of the atomic
structure of point defects by HREM so far has proven extremely
difficult, but this situation is likely to change in the near future.

The following sections are not intended to review the
applications of HREM, but rather to provide a summary of the
main theoretical results of proven usefulness in the field, a
selected bibliography, and recommendations for good experi-
mental practice. At the time of writing (1997), the point
resolution of HREM machines lies between 1 and 2 A.

The function of the objective lens in an electron microscope is
to perform a Fourier synthesis of the Bragg-diffracted electron
beams scattered (in transmission) by a thin crystal, in order to
produce a real-space electron image in the plane r. This electron
image intensity can be written

ly(r))? = |flIf(u) exp{2miu - r}P(u) exp{ix(u)} du 2, (4.3.8.1)

where W(u) represents the complex amplitude of the diffracted
wave after diffraction in the crystal as a function of the
reciprocal-lattice vector u [magnitude (2sin#)//] in the plane
perpendicular to the beam, so that the wavevector of an incident
plane wave is written K, = k, 4+ 27u. Following the conventlon
of Section 2.5.1 in IT B (1992) we write |K)| =274 ". The
function x(u) is the phase factor for the objective-lens transfer
function and P(u) describes the effect of the objective aperture:

_ for |u| < u,
P(u) = {O for |u| > u,.

For a periodic object, the image wavefunction is given by
summing the contributions from the set of reciprocal-lattice
points, g, so that
2

ly(r))? = (4.3.8.2)

For atomic resolution, with u, ~ IA*', it is apparent that, for all
but the simplest structures and smallest unit cells, this synthesis
will involve many hundreds of Bragg beams. A scattering
calculation must involve an even larger number of beams than
those that contribute resolvable detail to the image, since, as
described in Section 2.5.1 in IT B (1992), all beams interact
strongly through multiple coherent scattering. The theoretical
basis for HREM image interpretation is therefore the dynamical
theory of electron diffraction in the transmission (or Laue)
geometry [see Chapter 5.2 in IT B (1992)]. The resolution of
HREM images is limited by the aberrations of the objective
electron lens (notably spherical aberration) and by electronic
instabilities. An intuitive understanding of the complicated effect
of these factors on image formation from multiply scattered
Bragg beams is generally not possible. To provide a basis for
understanding, therefore, the following section treats the
simplified case of few-beam ‘lattice-fringe’ images, in order to
expose the relationship between the crystal potential, its structure
factors, electron-lens aberrations, and the electron image.

Image formation in the transmission electron microscope is
conventionally treated by analogy with the Abbe theory of
coherent optical imaging. The overall process is subdivided as
follows. (a) The problem of beam-specimen interaction for a
collimated kilovolt electron beam traversing a thin parallel-sided
slab of crystal in a given orientation. The solution to this problem
gives the elastically scattered dynamical electron wavefunction
Y(r), where r is a two-dimensional vector lying in the
downstream surface of the slab. Computer algorithms for
dynamical scattering are described in Section 4.3.6. (b) The
effects of the objective lens are incorporated by multiplying the
Fourier transform of /(r) by a function 7(u), which describes
both the wavefront aberration of the lens and the diffraction-
limiting effects of any apertures. The dominant aberrations are
spherical aberration, astigmatism, and defect of focus. The
image intensity is then formed from the modulus squared of the
Fourier transform of this product. (c) All partial coherence
effects may be incorporated by repeating this procedure for each
of the component energies and directions that make up the
illumination from an extended electron source, and summing the
resulting intensities. Because this procedure requires a separate
dynamical calculation for each component direction of the
incident beam, a number of useful approximations of restricted
validity have been developed; these are described in Subsection
4.3.8.4. This treatment of partial coherence assumes that a
perfectly incoherent effective source can be identified. For field-
emission HREM instruments, a coherent sum (over directions)
of complex image wavefunctions may be required.

General treatments of the subject of HREM can be found in
the texts by Cowley (1981) and Spence (1988). The sign
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Fig. 4.3.8.2. Imaging conditions for few-beam lattice images. For
three-beam axial imaging shown in (c), the formation of half-period
fringes is also shown.
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conventions used throughout the following are consistent with
the standard crystallographic convention of Section 2.5.1 of IT B
(1992), which assumes a plane wave of form exp{—i(k - r — wt)}
and so is consistent with X-ray usage.

4.3.8.2. Lattice-fringe images

We consider few-beam lattice images, in order to understand
the effects of instrumental factors on electron images, and to
expose the conditions under which they faithfully represent the
scattering object. The case of two-beam lattice images is
instructive and contains, in simplified form, most of the features
seen in more complicated many-beam images. These fringes
were first observed by Menter (1956) and further studied in the
pioneering work of Komoda (1964) and others [see Spence
(1988) for references to early work]. The electron-microscope
optic-axis orientation, the electron beam, and the crystal setting
are indicated in Fig. 4.3.8.2. If an objective aperture is used that
excludes all but the two beams shown from contributing to the
image, equation (4.3.8.2) gives the image intensity along
direction g for a centrosymmetric crystal of thickness ¢ as

I(x,1) = W) + [,
+2|%[|¥,| cos{2mx/dy + x(ug)ng(r) — no(1)}. (4.3.8.3)

The Bragg-diffracted beams have complex amplitudes
lI/_g(t) = |J/g(t)|§xp{irzg(t)}. The lattice-plane perlod.ls d, in
direction g [Miller indices (kkl)]. The lens-aberration phase
function, including only the effects of defocus Af and spherical
aberration (coefficient C,), is given by

x(ug) = Q) (Af22u2/2) + C2tul/4). (4.3.8.4)

The effects of astigmatism and higher-order aberrations have
been ignored. The defocus, Af, is negative for the objective lens
weakened (i.e. the focal length increased, giving a bright first
Fresnel-edge fringe). The magnitude of the reciprocal-lattice
vector u, = d;' = (2sinfz)/4, where 0y is the Bragg angle. If
these two Bragg beams were the only beams excited in the crystal
(a poor approximation for quantitative work), their amplitudes
would be given by the ‘two-beam’ dynamical theory of electron
diffraction as

Wy(t) = {cos[t(1 + w?)' 2 /&,] + iw(1 + w?) ™'/
x sin[mt(1 +w?)"/? /£,]} exp(—ims,t)
W, (1) = i(1 +w?) 2 sin[rr(1 + w?)' 2 /g,]

X exp(—is,t), (4.3.8.5)

where &, is the two-beam extinction distance, V, = 7/(0§,) is a
Fourier coefficient of crystal potential, s, is the excitation error
(see Fig. 4.3.8.2), w = s,&,, and the interaction parameter o is
defined in Section 2.5.1 of IT B (1992).

The two-beam image intensity given by equation (4.3.8.3)
therefore depends on the parameters of crystal thickness (z),
orientation (s,), structure factor (V,), objective-lens defocus Af,
and spherical-aberration constant C,. We consider first the
variation of lattice fringes with crystal thickness in the two-beam
approximation (Cowley, 1959; Hashimoto, Mannami & Naiki,
1961). At the exact Bragg condition (s, = 0), equations (4.3.8.5)
and (4.3.8.3) give

I(x,1) = 1 —sin(2nt/&,) sin [27x/d + x(u,)]. (4.3.8.6)

If we consider a wedge-shaped crystal with the electron beam
approximately normal to the wedge surface and edge, and take x
and g parallel to the edge, this equation shows that sinusoidal
lattice fringes are expected whose contrast falls to zero (and

reverses sign) at thicknesses of 7, = ng,/2. This apparent abrupt
translation of fringes (by d/2 in the direction x) at particular
thicknesses is also seen in some experimental many-beam
images. The effect of changes in focus (due perhaps to variations
in lens current) is seen to result in a translation of the fringes (in
direction x), while time-dependent variations in the accelerating
voltage have a similar effect. Hence, time-dependent variations
of the lens focal length or the accelerating voltage result in
reduced image contrast (see below). If the illumination makes a
small angle o = Ju’ with the optic axis, the intensity becomes

I(x, o) = [Wol” + [, > 4 2|&,||¥,]
x cos[x(—uy —u') — x(u') + 2mx/d + ny(t) — no(t)].

For a uniformly intense line source subtending a semiangle 6,
the total lattice-fringe intensity is

I(x) = (1/6,) [ I(x, a)da.

The resulting fringe visibility C = (I,,x — Inin)/ Tmax T Imin) 18
proportional to C = (sin8)/B8, where B =2mAf6./d. The
contrast falls to zero for 8 = m, so that the range of focus over
which fringes are expected is Az = d/0,. This is the approximate
depth of field for lattice images due to the effects of the finite
source size alone.

The case of three-beam fringes in the axial orientation is of
more practical importance [see Fig. 4.3.8.2(b)]. The image
intensity for ¥, = W_, and s, = s_, is

1(x, 1) = |Wol” + 2|W,* + 2|¥, | cos(4mx/d)
+ 4%, ||¥,| cos(2rx/d)
X COS[X(”g) + ng(t) - 7’/O(l‘)]

The lattice image is seen to consist of a constant background plus
cosine fringes with the lattice spacing, together with cosine
fringes of half this spacing. The contribution of the half-spacing
fringes is independent of instrumental parameters (and therefore
of electronic instabilities if 6, = 0). These fringes constitute an
important HREM image artifact. For kinematic scattering,
Ng(t) — no(#) = —7m/2 and only the half-period fringes will then
be seen if x(u,) = nm, or for focus settings

(4.3.8.7)

Af =it — Ciu2)2. (4.3.8.8)
Fig. 4.3.8.2(c) indicates the form of the fringes expected for two
focus settings with differing half-period contributions. As in the
case of two-beam fringes, dynamical scattering may cause ¥ to
be severely attenuated at certain thicknesses, resulting also in a
strong half-period contribution to the image.

Changes of 27 in x(u,) in equation (4.3.8.7) leave I(x, 1)
unchanged. Thus, changes of defocus by amounts

Afy = 2n/(Jai}) (4.3.8.9)

or changes in C; by

AC, = 4n/(2’ug) (4.3.8.10)

yield identical images. The images are thus periodic in both Af
and C,. This is a restricted example of the more general
phenomenon of n-beam Fourier imaging discussed in Subsection
4.3.8.3.

We note that only a single Fourier period will be seen if Af; is
less than the depth of field Az. This leads to the approximate
condition ®, > A/d, which, when combined with the Bragg law,
indicates that a single period only of images will be seen when
adjacent diffraction discs just overlap.
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The axial three-beam fringes will coincide with the lattice
planes, and show atom positions as dark if x(u,) = (2n — 1/2)m
and 1,(t) — n,(t) = —7/2. This total phase shift of —m between
¥, and the scattered beams is the desirable imaging condition for
phase contrast, giving rise to dark atom positions on a bright
background. This requires

C, = (4n — 1)/(Pug) — 24f /(Puy

as a condition for identical axial three-beam lattice images for
n=0,1,2,.... This family of lines has been plotted in Fig.
4.3.8.3 for the (111) planes of silicon. Dashed lines denote the
locus of ‘white-atom’ images (reversed contrast fringes), while
the dotted lines indicate half-period images. In practice, the
depth of field is limited by the finite illumination aperture 6., and
few-beam lattice-image contrast will be a maximum at the
stationary-phase focus setting, given by

Afy = —C2ul. (4.3.8.11)

This choice of focus ensures Vx(u) = 0 for u = u,, and thus
ensures the most favourable trade-off between increasing 6. and
loss of fringe contrast for lattice planes g. Note that Af; is not
equal to the Scherzer focus Af, (see below). This focus setting is

y=—#2L) L [ 1A

/g
Depth of field /Az
by,

-300
Af(nm)

Fig. 4.3.8.3. A summary of three- (or five-) beam axial imaging
conditions. Here, Af; is the Fourier image period, Af; the stationary-
phase focus, C,(0) the image period in C,, and a scattering phase of
—m/2 is assumed. The lines are drawn for the (111) planes of silicon
at 100kV with . = 1.4 mrad.
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Fig. 4.3.8.4. The contrast of few-beam lattice images as a function of
focus in the neighbourhood of the stationary-phase focus [see Olsen &
Spence (1981)].

also indicated on Fig. 4.3.8.3, and indicates the instrumental
conditions which produce the most intense (111) three- (or five-)
beam axial fringes in silicon. For three-beam axial fringes of
spacing d, it can be shown that the depth of field Az is
approximately

Az = (In2)"*d/6 7. (4.3.8.12)

This depth of field, within which strong fringes will be seen, is
indicated as a boundary on Fig. 4.3.8.3. Thus, the finer the
image detail, the smaller is the focal range over which it may be
observed, for a given illumination aperture ..

Fig. 4.3.8.4 shows an exact dynamical calculation for the
contrast of three-beam axial fringes as a function of Af in the
neighbourhood of Af,. Both reversed contrast and half-period
fringes are noted. The effects of electronic instabilities on lattice
images are discussed in Subsection 4.3.8.3. It is assumed above
that 6, is sufficiently small to allow the neglect of any changes in
diffraction conditions (Ewald-sphere orientation) within ©..
Under a similar approximation but without the approximations of
transfer theory, Desseaux, Renault & Bourret (1977) have
analysed the effect of beam divergence on two-dimensional five-
beam axial lattice fringes.

When two-dimensional patterns of fringes are considered, the
Fourier imaging conditions become more complex (see Subsec-
tion 4.3.8.3), but half-period fringe systems and reversed-
contrast images are still seen. For example, in a cubic
projection, a focus change of Af;/2 results in an image shifted
by half a unit cell along the cell diagonal. It is readily shown that

explix(Af)] = explix(Af + Afy)]

it Afy = 2na*/ A+ 2mb*/). when n, m are integers and a and b
are the two dimensions of any orthogonal unit cell that can be
chosen for ¥, (x, y). Thus, changes in focus by Af;(n, m) produce
identical images in crystals for which such a cell can be chosen,
regardless of the number of beams contributing (Cowley &
Moodie, 1960).

For closed-form expressions for the few-beam (up to 10
beams) two-dimensional dynamical Bragg-beam amplitudes ¥,
in orientations of high symmetry, the reader is referred to the
work of Fukuhara (1966).

4.3.8.3. Crystal structure images

We define a crystal structure image as a high-resolution
electron micrograph that faithfully represents a projection of a
crystal structure to some limited resolution, and which was
obtained using instrumental conditions that are independent of
the structure, and so require no a priori knowledge of the
structure. The resolution of these images is discussed in
Subsection 4.3.8.6, and their variation with instrumental
parameters in Subsection 4.3.8.4.

Equation (4.3.8.2) must now be modified to take account of
the finite electron source size used and of the effects of the range
of energies present in the electron beam. For a perfect crystal we
may write, as in equation (2.5.1.36) in IT B (1992),

I(r) = [[ 1y, Af, ) G() B(Af, w)du' dAf (4.3.8.13a)

for the total image intensity due to an electron source whose
normalized distribution of wavevectors is G(u’), where u’ has
components #;, v;, and which extends over a range of energies
corresponding to the distribution of focus B(Af, u). If x is also
assumed to vary linearly across 6, and changes in the diffraction
conditions over this range are assumed to make only negligible
changes in the diffracted-beam amplitude ¥,, the expression for
a Fourier coefficient of the total image intensity /;(r) becomes
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I, = Xh: ¥y exp{—ix(h)}y{Vx(h) — Vx(h — g)}

x Yi_gexplix(th — g)} i (h* — |h — g*)*},

where y(h) and B(g) are the Fourier transforms of G(u’) and
B(Af, W), respectively.

For the imaging of very thin crystals, and particularly for the
case of defects in crystals, which are frequently the objects of
particular interest, we give here some useful approximations for
HREM structure images in terms of the continuous projected
crystal potential

(4.3.8.13b)

p(x,y) = (1/Z)g’<ﬂ(x,y, z)dz,

where the projection is taken in the electron-beam direction. A
brief summary of the use of these approximations is included in
Section 2.5.1 of IT B (1992) and computing methods are
discussed in Subsection 4.3.8.5 and Section 4.3.4.

The projected-charge-density (PCD) approximation (Cowley
& Moodie, 1960) gives the HREM image intensity (for the
simplified case where C; = 0) as

Ix,y) = 1+ (Af 0/ 2me0e)p, (%, ),

where p,(x,y) is the projected charge density for the specimen
(including the nuclear contribution) and is related to ¢,(x,y)
through Poisson’s equation. Here, ¢,¢ is the specimen dielectric
constant. This approximation, unlike the weak-phase-object
approximation (WPO), includes multiple scattering to all orders
of the Born series, within the approximation that the component
of the scattering vector is zero in the beam direction (a ‘flat’
Ewald sphere). Contrast is found to be proportional to defocus
and to p,(x,y). The failure conditions of this approximation are
discussed by Lynch, Moodie & O’Keefe (1975); briefly, it fails
for x(uy) > 7/2 (and hence if C,, Af or u, becomes large) or for
large thicknesses ¢ (f < 7nm is suggested for specimens of
medium atomic weight and 4 =0.037A). The PCD result
becomes increasingly accurate with increasing accelerating
voltage for small C,.

The WPO approximation has been used extensively in
combination with the Scherzer-focus condition (Scherzer,
1949) for the interpretation of structure images (Cowley &
Iijima, 1972). This approximation neglects multiple scattering of
the beam electron and thereby allows the application of the
methods of linear transfer theory from optics. The image
intensity is then given, for plane-wave illumination, by

I(x,y) = 1+ 20¢,(x, y) * F{sin x(u, v)P(u, v)}
=1+ 20¢,(x,y) * S(x,y),

(4.3.8.13¢)

(4.3.8.14)

where J denotes Fourier transform, % denotes convolution, and u
and v are orthogonal components of the two-dimensional
scattering vector u. The function S(x,y) is sharply peaked and
negative at the ‘Scherzer focus’

Af = Af, =1.2(C,)"? (4.3.8.15q)

and the optimum objective aperture size
6, = 1.5(1/C,)"*. (4.3.8.15b)

It forms the impulse response of an electron microscope for
phase contrast. Contrast is found to be proportional to ¢, and to
the interaction parameter o, which increases very slowly with
accelerating voltage above about 500 keV. The point resolution
[see Subsection 2.5.1.9 of IT' B (1992) and Subsection 4.3.8.6] is
conventionally defined from equation (4.3.8.15b) as 1/6,, or

d, = 0.66 C//*3¥*, (4.3.8.16)

The occurrence of appreciable multiple scattering, and
therefore of the failure of the WPO approximation, depends on
specimen thickness, orientation, and accelerating voltage.
Detailed comparisons between accurate multiple-scattering
calculations, the PCD approximation, and the WPO approxima-
tion can be found in Lynch, Moodie & O’Keefe (1975) and Jap &
Glaeser (1978). As a very rough guide, equation (4.3.8.14) can
be expected to fail for light elements at 100 keV and thicknesses
greater than about 5.0 nm. Multiple-scattering effects have been
predicted within single atoms of gold at 100 keV.

The WPO approximation may be extended to include the
effects of an extended source (partial spatial coherence) and a
range of incident electron-beam energies (temporal coherence).
General methods for incorporating these effects in the presence
of multiple scattering are described in Subsection 4.3.8.5. Under
the approximations of linear imaging outlined below, it can be
shown (Wade & Frank, 1977; Fejes, 1977) that sin x(u, v)P(u, v)
in equation (4.3.8.14) may be replaced by

A'(w) = P(u) explix(w)]exp(—n* A*2*u* /2)(V x/270)
= P(u) exp[ix(u)] exp(im> A2 27 u*/2) exp(—mu3q)
(4.3.8.17)

if astigmatism is absent. Here, wuw=uwi+vj and
lul =26// = (® ++v*)"*. In addition, y(uw) is the Fourier
transform of the source intensity distribution (assumed
Gaussian), so that y(Vyx/2m) is small in regions where the
slope of x(u’) is large, resulting in severe attenuation of these
spatial frequencies. If the illuminating beam divergence ©, is
chosen as the angular half width for which the distribution of
source intensity falls to half its maximum value, then

6, = Juy(In2)"/2.
The quantity ¢ is defined by
qg=(C 0 + Afiu) + T2,

where T2 expresses a coupling between the effects of partial
spatial coherence and temporal coherence. This term can
frequently be neglected under HREM conditions [see Wade &
Frank (1977) for details]. The damping envelope due to
chromatic effects is described by the parameter

A =C.0=CAlo*(V)I/V§ + [45” )]/ T
o (E)/ES) ", (4.3.8.19)

where o%(V,) and o*(l,) are the variances in the statistically
independent fluctuations of accelerating voltage V, and objec-
tive-lens current I,. The r.m.s. value of the high voltage
fluctuation is equal to the standard deviation o(V,) = [o-Z(VO)]1 .
The full width at half-maximum height of the energy distribution
of electrons leaving the filament is

AE =2(21n2)"?0(E,) = 2.355[0*(E,)]"/*. (4.3.8.20)

Here, C. is the chromatic aberration constant of the objective
lens.

Equations (4.3.8.14) and (4.3.8.17) indicate that under linear
imaging conditions the transfer function for HREM contains a
chromatic damping envelope more severely attenuating than a
Gaussian of width

(4.3.8.18)

Up(4) = [2/n24]'"7,

which is present in the absence of any objective aperture P(u).
The resulting resolution limit
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d, = [n\A/2]'? (4.3.8.21)

is known as the information resolution limit (see Subsection
4.3.8.6) and depends on electronic instabilities and the thermal-
energy spread of electrons leaving the filament. The reduction in
the contribution of particular diffracted beams to the image due
to limited spatial coherence is minimized over those extended
regions for which Vx(u) is small, called passbands, which occur
when

Af, =[C,A(8n+3)/2]"%. (4.3.8.22)

The Scherzer focus A f, corresponds to n = 0. These passbands
become narrower and move to higher u values with increasing n,
but are subject also to chromatic damping effects. The passbands
occur between spatial frequencies U; and U,, where

U, = CoV4 7™M [(8n +2) /2] + 1)1, (4.3.8.23)

Their use for extracting information beyond the point resolution
of an electron microscope is further discussed in Subsection
4.3.8.6.

Fig. 4.3.8.5 shows transfer functions for a modern instrument
for n =0 and 1. Equations (4.3.8.14) and (4.3.8.17) provide a
simple, useful, and popular approach to the interpretation of
HREM images and valuable insights into resolution-limiting
factors. However, it must be emphasized that these results apply
only (amongst other conditions) for &, >> &, (in crystals) and
therefore do not apply to the usual case of strong multiple
electron scattering. Equation (4.3.8.13b) does not make this
approximation. In real space, for crystals, the alignment of
columns of atoms in the beam direction rapidly leads to phase

Cs=1mm
Y A4Af=-49.7 nm
400 kV
A=8.0nm
0¢=0.8 mR

2 4

8 X (hm™)

-1
(@

Y Af=-951nm

X (nm~")
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Fig. 4.3.8.5. (@) The transfer function for a 400kV electron microscope
with a point resolution of 1.7 A at the Scherzer focus; the curve is
based on equation (4.3.8.17). In (b) is shown a transfer function for
similar conditions at the first ‘passband’ focus [z =1 in equation
(4.3.8.22)].

changes in the electron wavefunction that exceed /2, leading to
the failure of equation (4.3.8.14). Accurate quantitative
comparisons of experimental and simulated HREM images
must be based on equation (4.3.8.13a), or possibly (4.3.8.13b),
with Y(u’, Af, r) obtained from many-beam dynamical calcula-
tions of the type described in Subsection 4.3.8.5.

For the structure imaging of specific types of defects and
materials, the following references are relevant. (i) For line
defects viewed parallel to the line, d’Anterroches & Bourret
(1984); viewed normal to the line, Alexander, Spence, Shindo,
Gottschalk & Long (1986). (ii) For problems of variable lattice
spacing (e.g. spinodal decomposition), Cockayne & Gronsky
(1981). (iii) For point defects and their ordering, in tunnel
structures, Yagi & Cowley (1978); in semiconductors,
Zakharov, Pasemann & Rozhanski (1982); in metals, Fields &
Cowley (1978). (iv) For interfaces, see the proceedings reported
in Ultramicroscopy (1992), Vol. 40, No. 3. (v) For metals,
Lovey, Coene, Van Dyck, Van Tendeloo, Van Landuyt &
Amelinckx (1984). (vi) For organic crystals, Kobayashi,
Fujiyoshi & Uyeda (1982). (vii) For a general review of
applications in solid-state chemistry, see the collection of papers
reported in Ultramicroscopy (1985), Vol. 18, Nos. 1-4. (viii)
Radiation-damage effects are observed at atomic resolution by
Horiuchi (1982).

4.3.8.4. Parameters affecting HREM images

The instrumental parameters that affect HREM images
include accelerating voltage, astigmatism, optic-axis alignment,
focus setting Af, spherical-aberration constant C;, beam
divergence 0., and chromatic aberration constant C,. Crystal
parameters influencing HREM images include thickness,
absorption, ionicity, and the alignment of the crystal zone axis
with the beam, in addition to the structure factors and atom
positions of the sample. The accurate measurement of electron
wavelength or accelerating voltage has been discussed by many
workers, including Uyeda, Hoier and others [see Fitzgerald &
Johnson (1984) for references]. The measurement of Kikuchi-
line spacings from crystals of known structure appears to be the
most accurate and convenient method for HREM work, and
allows an overall accuracy of better than 0.2% in accelerating
voltage. Fluctuations in accelerating voltage contribute to the
chromatic damping term A in equation (4.3.8.19) through the
variance o*(V,). With the trend toward the use of higher
accelerating voltages for HREM work, this term has become
especially significant for the consideration of the information
resolution limit [equation (4.3.8.21)].

Techniques for the accurate measurement of astigmatism and
chromatic aberration are described by Spence (1988). The
displacement of images of small crystals with beam tilt may be
used to measure C;; alternatively, the curvature of higher-order
Laue-zone lines in CBED patterns has been used. The method of
Budinger & Glaeser (1976) uses a similar dark-field image-
displacement method to provide values for both Af and C;, and
appears to be the most convenient and accurate for HREM work.
The analysis of optical diffractograms initiated by Thon and co-
workers from HREM images of thin amorphous films provides
an invaluable diagnostic aid for HREM work; however, the
determination of C; by this method is prone to large errors,
especially at small defocus. Diffractograms provide a rapid
method for the determination of focus setting (see Krivanek,
1976) and in addition provide a sensitive indicator of specimen
movement, astigmatism, and the damping-envelope constants A
and O,.
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Misalignment of the electron beam, optic axis, and crystal axis
in bright-field HREM work becomes increasingly important with
increasing resolution and specimen thickness. The first-order
effects of optical misalignment are an artifactual translation of
spatial frequencies in the direction of misalignment by an amount
proportional to the misalignment and to the square of spatial
frequency. The corresponding phase shift is not observable in
diffractograms. The effects of astigmatism on transfer functions
for inclined illumination are discussed in Saxton (1978).

The effects of misalignment of the beam with respect to the
optic axis are discussed in detail by Smith, Saxton, O’Keefe,
Wood & Stobbs (1983), where it is found that all symmetry
elements (except a mirror plane along the tilt direction) may be
destroyed by misalignment. The maximum allowable misalign-
ment for a given resolution § in a specimen of thickness ¢ is
proportional to

a = 5/8t. (4.3.8.24)

Misalignment of a crystalline specimen with respect to the beam
may be distinguished from misalignment of the optic axis with
respect to the beam by the fact that, in very thin crystals, the
former does not destroy centres of symmetry in the image.

The use of known defect point-group symmetry (for example
in stacking faults) to identify a point in a HREM image with a
point in the structure and so to resolve the black or white atomic
contrast ambiguity has been described (Olsen & Spence, 1981).
Structures containing screw or glide elements normal to the
beam are particularly sensitive to misalignment, and errors as
small as 0.2 mrad may substantially alter the image appearance.

A rapid comparison of images of amorphous material with the
beam electronically tilted into several directions appears to be
the best current method of aligning the beam with the optic axis,
while switching to convergent-beam mode appears to be the most
effective method of aligning the beam with the crystal axis.
However, there is evidence that the angle of incidence of the
incident beam is altered by this switching procedure.

The effects of misalignment and choice of beam divergence ©.,
on HREM images of crystals containing dynamically forbidden
reflections are reviewed by Nagakura, Nakamura & Suzuki
(1982) and Smith, Bursill & Wood (1985). Here the dramatic
example of rutile in the [001] orientation is used to demonstrate
how a misalignment of less than 0.2 mrad of the electron beam
with respect to the crystal axis can bring up a coarse set of
fringes (4.6 A), which produce an image of incorrect symmetry,
since these correspond to structure factors that are forbidden
both dynamically and kinematically.

Crystal thickness is most accurately determined from images
of planar faults in known orientations, or from crystal
morphology for small particles. It must otherwise be treated as
a refinement parameter. Since small crystals (such as MgO
smoke particles, which form as perfect cubes) provide such an
independent method of thickness determination, they provide the
most convincing test of dynamical imaging theory. The ability to
match the contrast reversals and other detailed changes in
HREM images as a function of either thickness or focus (or both)
where these parameters have been measured by an independent
method gives the greatest confidence in image interpretation.
This approach, which has been applied in rather few cases [see,
for example, O’Keefe, Spence, Hutchinson & Waddington
(1985)] is strongly recommended. The tendency for n-beam
dynamical HREM images to repeat with increasing thickness in
cases where the wavefunction is dominated by just two Bloch
waves has been analysed by several workers (Kambe, 1982).

Since electron scattering factors are proportional to the
difference between atomic number and X-ray scattering factors,

and inversely proportional to the square of the scattering angle
(see Section 4.3.1), it has been known for many years that the
low-order reflections that contribute to HREM images are
extremely sensitive to the distribution of bonding electrons and
so to the degree of ionicity of the species imaged. This
observation has formed the basis of several charge-density-map
determinations by convergent-beam electron diffraction [see, for
example, Zuo, Spence & O’Keefe (1988)]. Studies of ionicity
effects on HREM imaging can be found in Anstis, Lynch,
Moodie & O’Keefe (1973) and Fujiyoshi, Ishizuka, Tsuji,
Kobayashi & Uyeda (1983).

The depletion of the elastic portion of the dynamical electron
wavefunction by inelastic crystal excitations (chiefly phonons,
single-electron excitations, and plasmons) may have dramatic
effects on the HREM images of thicker crystals (Pirouz, 1974).
For image formation by the elastic component, these effects may
be described through the use of a complex ‘optical” potential and
the appropriate Debye-Waller factor (see Section 2.5.1).
However, existing calculations for the absorption coefficients
derived from the imaginary part of this potential are frequently
not applicable to lattice images because of the large objective
apertures used in HREM work. It has been suggested that HREM
images formed from electrons that suffer small energy losses
(and so remain ‘in focus’) but large-angle scattering events
(within the objective aperture) due to phonon excitation may
contribute high-resolution detail to images (Cowley, 1988). For
measurements of the imaginary part of the optical potential by
electron diffraction, the reader is referred to the work of Voss,
Lehmpfuhl & Smith (1980), and references therein. All evidence
suggests, however, that for the crystal thicknesses generally used
for HREM work (¢ < 200A) the effects of ‘absorption’ are small.

In summary, the general approach to the matching of
computed and experimental HREM images proceeds as follows
(Wilson, Spargo & Smith, 1982). (i) Values of A, @,, and C, are
determined by careful measurements under well defined
conditions (electron-gun bias setting, illumination aperture
size, specimen height as measured by focusing-lens currents,
electron-source size, etc). These parameters are then taken as
constants for all subsequent work under these instrumental
conditions (assuming also continuous monitoring of electronic
instabilities). (i) For a particular structure refinement, the
parameters of thickness and focus are then varied, together with
the choice of atomic model, in dynamical computer simulations
until agreement is obtained. Every effort should be made to
match images as a function of thickness and focus. (iii) If
agreement cannot be obtained, the effects of small misalignments
must be investigated (Smith ez al., 1985). Crystals most sensitive
to these include those containing reflections that are absent due to
the presence of screw or glide elements normal to the beam.

4.3.8.5. Computing methods

The general formulations for the dynamical theory of electron
diffraction in crystals have been described in Section 5.2 of IT B
(1992). In Section 4.3.6, the computing methods used for
calculating diffraction-beam amplitudes have been outlined.

Given the diffracted-beam amplitudes, llfg, the image is
calculated by use of equations (4.3.8.2), including, when
appropriate, the modifications of (4.3.8.13b).

The numerical methods that can be employed in relation to
crystal-structure imaging make use of algorithms based on (i)
matrix diagonalization, (ii) fast Fourier transforms, (iii) real-
space convolution (Van Dyck, 1980), (iv) Runge-Kutta (or
similar) methods, or (v) power-series evaluation. Two other
solutions, the Cowley-Moodie polynomial solution and the
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Feynman path-integral solution, have not been used extensively
for numerical work. Methods (i) and (ii) have proven the most
popular, with (ii) (the multislice method) being used most
extensively for HREM image simulations. The availability of
inexpensive array processors has made this technique highly
efficient. A comparison of these two N-beam methods is given by
Self, O’Keefe, Buseck & Spargo (1983), who find the multislice
method to be faster (time proportional to Nlog, N) than the
diagonalization method (time proportional to N?) for N > 16.
Computing space increases roughly as N2 for the diagonalization
method, and as N for the multislice. The problem of steeply
inclined boundary conditions for multislice computations has
been discussed by Ishizuka (1982).

In the Bloch-wave formulation, the lattice image is given by

I(I‘) = Z Z Céi)cgj)c(gi)cl(]j) exp{i[Zn(y”’ _ )/(j))l

i,j hg
+2n(g —h)-r— x(Af, C,, 8) + x(Af, C,, )]},
(4.3.8.25)

where Cé’) and y are the eigenvector elements and eigenvalues
of the structure matrix [see Hirsch, Howie, Nicholson, Pashley
& Whelan (1977) and Section 4.3.4].

Using modern personal computers or workstations, it is now
possible to build efficient single-user systems that allow
interactive dynamical structure-image calculations. Either an
image intensifier or a cooled scientific grade charge-coupled
device and single-crystal scintillator screen may be used to
record the images, which are then transferred into a computer
(Daberkow, Herrman, Liu & Rau, 1991). This then allows for
the possibility of automated alignment, stigmation and focusing
to the level of accuracy needed at 0.1nm point resolution
(Krivanek & Mooney, 1993). An image-matching search
through trial structures, thickness and focus parameters can
then be completed rapidly. Where large numbers of pixels, large
dynamic range and high sensitivity are required, the Image Plate
has definite advantages and so should find application in electron
holography and biology (Shindo, Hiraga, Oikawa & Mori,
1990).

For the calculation of images of defects, the method of
periodic continuation has been used extensively (Grinton &
Cowley, 1971). Since, for kilovolt electrons traversing thin
crystals, the transverse spreading of the dynamical wavefunction
is limited (Cowley, 1981), the complex image amplitude at a
particular point on the specimen exit face depends only on the
crystal potential within a cylinder a few angstroms in diameter,
erected about that point (Spence, O’Keefe & Iijima, 1978). The
width of this cylinder depends on accelerating voltage, specimen
thickness, and focus setting (see above references). Thus, small
overlapping ‘patches’ of exit-face wavefunction may be calcu-
lated in successive computations, and the results combined to
form a larger area of image. The size of the ‘artificial
superlattice’ used should be increased until no change is found
in the wavefunction over the central region of interest. For most
defects, the positions of only a few atoms are important and,
since the electron wavefunction is locally determined (for thin
specimens at Scherzer focus), it appears that very large
calculations are rarely needed for HREM work. The simulation
of profile images of crystal surfaces at large defocus settings
will, however, frequently be found to require large amounts of
storage.

A new program should be tested to ensure that (a) under
approximate two-beam conditions the calculated extinction
distances for small-unit-cell crystals agree roughly with tabulated
values (Hirsch ez al., 1977), (b) the simulated dynamical images

have the correct symmetry, (c) for small thickness, the Scherzer-
focus images agree with the projected potential, and (d) images
and beam intensities agree with those of a program known to be
correct. The damping envelope (product representation) [equa-
tion (4.3.8.17)] should only be used in a thin crystal with
b, > P,; in general, the effects of partial spatial and temporal
coherence must be incorporated using equation (4.3.8.13a) or
(4.3.8.13b), depending on whether variations in diffraction
conditions over 6, are important. Thus, a separate multislice
dynamical-image calculation for each component plane wave in
the incident cone of illumination may be required, followed by
an incoherent sum of all resulting images.

The outlook for obtaining higher resolution at the time of
writing (1997) is broadly as follows. (1) The highest point
resolution currently obtainable is close to 0.1 nm, and this has
been obtained by taking advantage of the reduction in electron
wavelength that occurs at high voltage [equation (4.3.8.16)]. A
summary of results from these machines can be found in
Ultramicroscopy (1994), Vol. 56, Nos. 1-3, where applications
to fullerenes, glasses, quasicrystals, interfaces, ceramics,
semiconductors, metals and oxides and other systems may be
found. Fig. 4.2.8.6 shows a typical result. High cost, and the
effects of radiation damage (particularly at larger thickness
where defects with higher free energies are likely to be found),
may limit these machines to a few specialized laboratories in the
future. The attainment of higher resolution through this approach
depends on advances in high-voltage engineering. (2) Aberration
coefficients may be reduced if higher magnetic fields can be
produced in the pole piece, beyond the saturation flux of the
specialized iron alloys currently used. Research into super-
conducting lenses has therefore continued for many years in a
few laboratories. Fluctuations in lens current are also eliminated
by this method. (3) Electron holography was originally
developed for the purpose of improving electron-microscope
resolution, and this approach is reviewed in the following
section. (4) Electron—optical correction of aberrations has been
under study for many years in work by Scherzer, Crewe, Beck,
Krivanek, Lanio, Rose and others — results of recent experi-
mental tests are described in Haider & Zach (1995) and
Krivanek, Dellby, Spence, Camps & Brown (1997). The
attainment of 0.1nm point resolution is considered feasible.
Aberration correctors will also provide benefits other than
increased resolution, including greater space in the pole piece for
increased sample tilt and access to X-ray detectors, etc.

Fig. 4.3.8.6. Structure image of a thin lamella of the 6H polytype of SiC
projected along [110] and recorded at 1.2 MeV. Every atomic column
(darker dots) is separately resolved at 0.109 nm spacing. The central
horizontal strip contains a computer-simulated image; the structure is
sketched at the left. [Courtesy of H. Ichinose (1994).]
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The need for resolution improvement beyond 0.1 nm has been
questioned - the structural information retrievable by a single
HREM image is always limited by the fact that a projection is
obtained. (This problem is particularly acute for glasses.)
Methods for combining different projected images (particularly
of defects) from the same region (Downing, Meisheng, Wenk &
O’Keefe, 1990) may now be as important as the search for higher
resolution.

4.3.8.6. Resolution and hyper-resolution

Since the resolution of an instrument is a property of the
instrument alone, whereas the ability to distinguish HREM
image features due to adjacent atoms depends on the scattering
properties of the atoms, the resolution of an electron microscope
cannot easily be defined [see Subsection 2.5.1.9 in IT B (1992)].
The Rayleigh criterion was developed for the incoherent imaging
of point sources and cannot be applied to coherent phase
contrast. Only for very thin specimens of light elements for
which it can be assumed that the scattering phase is —m/2 can the
straightforward definition of point resolution d, [equation
(4.3.8.16)] be applied. In general, the dynamical wavefunction
across the exit face of a crystalline sample bears no simple
relationship to the crystal structure, other than to preserve its
symmetry and to be determined by the ‘local’ crystal potential.
The use of a dynamical ‘R factor’ between computed and
experimental images of a known structure has been suggested by
several workers as the basis for a more general resolution
definition.

For weakly scattering specimens, the most satisfactory method
of measuring either the point resolution d, or the information
limit d; [see equation (4.3.8.21)] appears to be that of Frank
(1975). Here two successive micrographs of a thin amorphous
film are recorded (under identical conditions) and the super-
imposed pair used to obtain a coherent optical diffractogram
crossed by fringes. The fringes, which result from small
displacements of the micrographs, extend only to the band
limit ;! of information common to both micrographs, and
cannot be extended by photographic processing, noise, or
increased exposure. By plotting this band limit against defocus,
it is possible to determine both A and 6,. As an alternative, for
thin crystalline samples of large-unit-cell materials, the param-
eters A, 0., and C; can be determined by matching computed and
experimental images of crystals of known structure. It is the
specification of these parameters (for a given electron intensity
and wavelength) that is important in describing the performance
of high-resolution electron microscopes. We note that certain
conditions of focus or thickness may give a spurious impression
of ultra-high resolution [see equations (4.3.8.7) and (4.3.8.8)].

Within the domain of linear imaging, implying, for the most
part, the validity of the WPO approximation, many forms of
image processing have been employed. These have been of
particular importance for crystalline and non-crystalline biologi-
cal materials and include image reconstruction [see Section 2.5.4
in IT B (1992)] and the derivation of three-dimensional structures
from two-dimensional projections [see Section 2.5.5 in IT B
(1992)]. For reviews, see also Saxton (1980a), Frank (1980),
and Schiske (1975). Several software packages now exist that are
designed for image manipulation, Fourier analysis, and cross
correlation; for details of these, see Saxton (1980a) and Frank
(1980). The theoretical basis for the WPO approximation closely
parallels that of axial holography in coherent optics, thus much
of that literature can be applied to HREM image processing.
Gabor’s original proposal for holography was intended for
electron microscopy [see Cowley (1981) for a review].

The aim of image-processing schemes is the restoration of the
exit-face wavefunction, given in equation (4.3.8.13a). The
reconstruction of the crystal potential ¢,(r) from this is a
separate problem, since these are only simply related under the
approximation of Subsection 4.3.8.3. For a non-linear method
that allows the reconstruction of the dynamical image wavefunc-
tion, based on equation (4.3.8.13b), which thus includes the
effects of multiple scattering, see Saxton (1980b).

The concept of holographic reconstruction was introduced by
Gabor (1948, 1949) as a means of enhancing the resolution of
electron microscopes. Gabor proposed that, if the information on
relative phases of the image wave could be recorded by
observing interference with a known reference wave, the phase
modification due to the objective-lens aberrations could be
removed. Of the many possible forms of electron holography
(Cowley, 1994), two show particular promise of useful
improvements of resolution. In what may be called in-line
TEM holography, a through-focus series of bright-field images is
obtained with near-coherent illumination. With reference to the
relatively strong transmitted beam, the relative phase and
amplitude changes due to the specimen are derived from the
variations of image intensity (see Van Dyck, Op de Beeck &
Coene, 1994). The tilt-series reconstruction method also shows
considerable promise (Kirkland, Saxton, Chau, Tsuno &
Kawasaki, 1995).

In the alternative off-axis approach, the reference wave is that
which passes by the specimen area in vacuum, and which is made
to interfere with the wave transmitted through the specimen by
use of an electrostatic biprism (Moéllenstedt & Diiker, 1956). The
hologram consists of a modulated pattern of interference fringes.
The image wavefunction amplitude and phase are deduced from
the contrast and lateral displacements of the fringes (Lichte,
1991; Tonomura, 1992). The process of reconstruction from the
hologram to give the image wavefunction may be performed by
optical-analogue or digital methods and can include the
correction of the phase function to remove the effects of lens
aberrations and the attendant limitation of resolution. The point
resolution of electron microscopes has recently been exceeded by
this method (Orchowski, Rau & Lichte, 1995).

The aim of the holographic reconstructions is the restoration
of the wavefunction at the exit face of the specimen as given by
equation (4.3.8.13a). The reconstruction of the crystal potential
¢(r) from this is a separate problem, since the exit-face
wavefunction and ¢(r) are simply related only under the WPO
approximations of Subsection 4.3.8.3. The possibility of
deriving reconstructions from wavefunctions strongly affected
by dynamical diffraction has been considered by a number of
authors (for example, Van Dyck et al., 1994). The problem does
not appear to be solvable in general, but for special cases, such
as perfect thin single crystals in exact axial orientations,
considerable progress may be possible.

Since a single atom, or a column of atoms, acts as a lens with
negative spherical aberration, methods for obtaining super-
resolution using atoms as lenses have recently been proposed
(Cowley, Spence & Smirnov, 1997).

4.3.8.7. Alternative methods

A number of non-conventional imaging modes have been
found useful in electron microscopy for particular applications.
In scanning transmission electron microscopy (STEM), powerful
electron lenses are used to focus the beam from a very small
bright source, formed by a field-emission gun, to form a small
probe that is scanned across the specimen. Some selected part of
the transmitted electron beam (part of the coherent convergent-
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beam electron diffraction pattern produced) is detected to
provide the image signal that is displayed or recorded in
synchronism with the incident-beam scan. The principle of
reciprocity suggests that, for equivalent lenses, apertures and
column geometry, the resolution and contrast of STEM and
TEM images will be identical (Cowley, 1969). Practical
considerations of instrumental convenience distinguish particu-
larly useful STEM modes.

Crewe & Wall (1970) showed that, if an annular detector is
used to detect all electrons scattered outside the incident-beam
cone, dark-field images could be obtained with high efficiency
and with a resolution better than that of the bright-field mode by
a factor of about 1.4. If the inner radius of the annular detector is
made large (of the order of 10! rad for 100kV electrons), the
strong diffracted beams occurring for lower angles do not
contribute to the resulting high-angle annular dark-field
(HAADF) image (Howie, 1979), which is produced mainly by
thermal diffuse scattering. The HAADF mode has important
advantages for particular purposes because the contrast is
strongly dependent on the atomic number, Z, of the atoms
present but is not strongly affected by dynamical diffraction
effects and so shows near-linear variation with Z and with the
atom-number density in the sample. Applications have been
made to the imaging of small high-Z particles in low-Z supports,
such as in supported metal catalysts (Treacy & Rice, 1989) and
to the high-resolution imaging of individual atomic rows in
semiconductor crystals, showing the variations of composition
across planar interfaces (Pennycook & Jesson, 1991).

The STEM imaging modes may be readily correlated with
microchemical analysis of selected specimen areas having lateral
dimensions in the nanometre range, by application of the
techniques of electron energy-loss spectroscopy or X-ray
energy-dispersive analysis (Williams & Carter, 1996; Section
4.3.4). Also, diffraction patterns (coherent convergent-beam
electron diffraction patterns) may be obtained from any chosen
region having dimensions equal to those of the incident-beam
diameter and as small as about 0.2nm (Cowley, 1992). The
coherent interference between diffracted beams within such a
pattern may provide information on the symmetries, and,
ultimately, the atomic arrangement, within the illuminated
area, which may be smaller than the projection of the crystal
unit cell in the beam direction. This geometry has been used to
extend resolution for crystalline samples beyond even the
information resolution limit, d; (Nellist, McCallum & Roden-
burg, 1995), and is the basis for an exact, non-perturbative
inversion scheme for dynamical electron diffraction (Spence,
1998).

The detection of secondary radiations (light, X-rays, low-
energy ‘secondary’ electrons, efc.) in STEM or the detection of
energy losses of the incident electrons, resulting from particular
elementary excitations of the atoms in a crystal, in TEM or
STEM, may be used to form images showing the distributions in
a crystal structure of particular atomic species. In principle, this
may be extended to the chemical identification of individual atom
types in the projection of crystal structures, but only limited
success has been achieved in this direction because of the
relatively low level of the signals available. The formation of
atomic resolution images using inner-shell excitations, for
example, is complicated by the Bragg scattering of these
inelastically scattered electrons (Endoh, Hashimoto & Makita,
1994; Spence & Lynch, 1982).

Reflection electron microscopy (REM) has been shown to be a
powerful technique for the study of the structures and defects of
crystal surfaces with moderately high spatial resolution (Larsen
& Dobson, 1988), especially when performed in a specially built

electron microscope having an ultra-high-vacuum specimen
environment (Yagi, 1993). Images are formed by detecting
strong diffracted beams in the RHEED patterns produced when
kilovolt electron beams are incident on flat crystal surfaces at
grazing incidence angles of a few degrees. The images suffer
from severe foreshortening in the beam direction, but, in
directions at right angles to the beam, resolutions approaching
0.3 nm have been achieved (Koike, Kobayashi, Ozawa & Yagi,
1989). Single-atom-high surface steps are imaged with high
contrast, surface reconstructions involving only one or two
monolayers are readily seen and phase transitions of surface
superstructures may be followed.

The study of surface structure by use of high-resolution
transmission electron microscopes has also been productive in
particular cases. Images showing the structures of surface layers
with near-atomic resolution have been obtained by the use of
‘forbidden’ or ‘termination’ reflections (Cherns, 1974,
Takayanagi, 1984) and by phase-contrast imaging (Moodie &
Warble, 1967; Iijima, 1977). The imaging of the profiles of the
edges of thin or small crystals with clear resolution of the surface
atomic layers has also been effective (Marks, 1986). The
introduction of the scanning tunnelling microscope (Binnig,
Rohrer, Gerber & Weibel, 1983) and other scanning probe
microscopies has broadened the field of high-resolution surface
structure imaging considerably.

4.3.8.8. Combined use of HREM and electron diffraction

For many materials of organic or biological origin, it is
possible to obtain very thin crystals, only one or a few molecules
thick, extending laterally over micrometre-size areas. These may
give selected-area electron-diffraction patterns in electron
microscopes with diffraction spots extending out to angles
corresponding to d spacings as low as 0.1nm. Because the
materials are highly sensitive to electron irradiation, conven-
tional bright-field images cannot be obtained with resolutions
better than several nanometres. However, if images are obtained
with very low electron doses and then a process of averaging
over the content of a very large number of unit cells of the image
is carried out, images showing detail down to the scale of 1 nm or
less may be derived for the periodically repeated unit. From such
images, it is possible to derive both the magnitudes and phases of
the Fourier coefficients, the structure factors, out to some limit
of d spacings, say d,. From the diffraction patterns, the
magnitudes of the structure factors may be deduced, with greater
accuracy, out to a much smaller limit, d,. By combination of the
information from these two sources, it may be possible to obtain
a greatly improved resolution for an enhanced image of the
structure. This concept was first introduced by Unwin &
Henderson (1975), who derived images of the purple membrane
from Halobacterium halobium, with greatly improved resolu-
tion, revealing its essential molecular configuration.

Recently, several methods of phase extension have been
developed whereby the knowledge of the relative phases may be
extended from the region of the diffraction pattern covered by
the electron-microscope image transform to the outer parts.
These include methods based on the use of the tangent formula or
Sayre’s equation (Dorset, 1994; Dorset, McCourt, Fryer, Tivol
& Turner, 1994) and on the use of maximum-entropy concepts
(Fryer & Gilmore, 1992). Such methods have also been applied,
with considerable success, to the case of some thin inorganic
crystals (Fu et al., 1994). In this case, the limitation on the
resolution set by the electron-microscope images may be that due
to the transfer function of the microscope, since radiation-
damage effects are not so limiting. Then, the resolution achieved
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by the combined application of the electron diffraction data may basis for the phase-extension methods is currently limited to the
represent an advance beyond that of normal HREM imaging. WPO approximation. A summary of the present situation is
Difficulties may well arise, however, because the theoretical given in the book by Dorset (1995).
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