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4.3. ELECTRON DIFFRACTION

Large gaps at the dispersion surface are associated with strong
inner reflections — and a strong dynamical effect of two-beam-
like character. The absolute magnitude of the gap - or its
inverse, the extinction distance — can be obtained in different
ways. Early measurements were based on the split of diffraction
spots from a wedge, see Lehmpfuhl (1974), or the corresponding
fringe periods measured in bright- and dark-field micrographs
(Ando, Ichimiya & Uyeda, 1974). The most precise and
applicable large-gap methods are based on the refinement of
the fringe pattern in CBED discs from strong reflections, as
developed by Goodman & Lehmpfuhl (1967) and Voss,
Lehmpfuhl & Smith (1980). In recent years, this technique has
been developed to high perfection by means of filtered CBED
patterns, see Spence & Zuo (1992) and papers referred to
therein. See also Chapter 8.8.

The gap at the dispersion surface can also be obtained directly
from the split observed at the crossing of a weak Kikuchi line
with a strong band. Gjennes & Heier (1971) showed how this
can be used to determine strong low-order reflections. High
voltage may improve the accuracy (Terasaki, Watanabe &
Gjennes, 1979). The sensitivity of the intersecting Kikuchi-line
(IKL) method was further increased by the use of CBED instead
of Kikuchi patterns (Matsuhata, Tomokiyo, Watanabe & Eguchi,
1984; Tafte & Gjonnes, 1985). In a recent development, Hoier,
Bakken, Marthinsen & Holmestad (1993) have measured the
intensity distribution in the CBED discs around such intersec-
tions and have refined the main structure factors involved.

Two-dimensional rocking curves collected by CBED patterns
around the axis of a dense zone are complicated by extensive
many-beam dynamical interactions. The Bristol-Bath group
(Saunders, Bird, Midgley & Vincent, 1994) claim that the
strong dynamic effects can be exploited to yield high sensitivity
in refinement of low-order structure factors. They have also
developed procedures for ab initio structure determination based
on zone-axis patterns (Bird & Saunders, 1992), see Chapter 8.8.

Determination of phase invariants. It has been known for some
time (e.g Kambe, 1957) that the dynamical three-beam case
contains information about phase. As in the X-ray case,
measurement of dynamical effects can be used to determine the
value of triplets (Zuo, Heier & Spence, 1989) and to determine
phase angles to better than one tenth of a degree (Zuo, Spence,
Downs & Mayer, 1993) which is far better than any X-ray
method. Bird (1990) has pointed out that the phase of the
absorption potential may differ from the phase of the real
potential.

Thickness is an important parameter in electron-diffraction
experiments. In structure-factor determination based on CBED
patterns, thickness is often included in the refinement. Thickness
can also be determined directly from profiles connected with
large gaps at the dispersion surface (Goodman & Lehmpfuhl,
1967; Blake, Jostsons, Kelly & Napier, 1978; Glazer, Ramesh,
Hilton & Sarikaya, 1985). The method is based on the outer part
of the fringe profile, which is not so sensitive to the structure
factor. The intensity minimum of the ith fringe in the diffracted
disc occurs at a position corresponding to the excitation error s;
and expressed as

(7 + 1/t =nj, (4.3.7.9)
where #; is a small integer describing the order of the minimum.
This equation can be arranged in two ways for graphic
determination of thickness. The commonest method appears to
be to plot (s;/n;)* against 1/n;> and then determine the thickness
from the intersection with the ordinate axis (Kelly, Jostsons,
Blake & Napier, 1975). Glazer et al. (1985) claim that the

method originally proposed by Ackermann (1948), where s? is
plotted against n; and the thickness is taken from the slope, is
more accurate. In both cases, the outer part of the rocking curve
is emphasized; exact knowledge of the gap is not necessary for a
good determination of thickness, provided the assumption of a
two-beam-like rocking curve is valid.

4.3.8. Crystal structure determination by high-resolution
electron microscopy
(By J. C. H. Spence and J. M. Cowley)

4.3.8.1. Introduction

For the crystallographic study of real materials, high-
resolution electron microscopy (HREM) can provide a great
deal of information that is complementary to that obtainable by
X-ray and neutron diffraction methods. In contrast to the
statistically averaged information that these other methods
provide, the great power of HREM lies in its ability to elucidate
the detailed atomic arrangements of individual defects and the
microcrystalline structure in real crystals. The defects and
inhomogeneities of real crystals frequently exert a controlling
influence on phase-transition mechanisms and more generally on
all the electrical, mechanical, and thermal properties of solids.
The real-space images that HREM provides (such as that shown
in Fig. 4.3.8.1) can give an immediate and dramatic impression
of chemical crystallography processes, unobtainable by other
methods. Their atomic structure is of the utmost importance for
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Fig. 4.3.8.1. Atomic resolution image of a tantalum-doped tungsten
trioxide crystal (pseudo-cubic structure) showing extended crystal-
lographic shear-plane defects (C), pentagonal-column hexagonal-
tunnel (PCHT) defects (T), and metallization of the surface due to
oxygen desorption (JEOL 4000EX, crystal thickness less than 200 A,
400kV, C, = 1mm). Atomic columns are black. [Smith, Bursill &
Wood (1985).]
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an understanding of the properties of real materials. The HREM
method has proven powerful for the determination of the
structure of such defects and of the submicrometre-sized
microcrystals that constitute many polyphase materials.

In summary, HREM should be considered the technique of
choice where a knowledge of microcrystal size, shape or
morphology is required. In addition, it can be used to reveal
the presence of line and planar defects, inclusions, grain
boundaries and phase boundaries, and, in favourable cases, to
determine atomic structure. Surface atomic structure and
reconstruction have also been studied by HREM. However,
meaningful results in this field require accurately controlled
ultra-high-vacuum conditions. The determination of the atomic
structure of point defects by HREM so far has proven extremely
difficult, but this situation is likely to change in the near future.

The following sections are not intended to review the
applications of HREM, but rather to provide a summary of the
main theoretical results of proven usefulness in the field, a
selected bibliography, and recommendations for good experi-
mental practice. At the time of writing (1997), the point
resolution of HREM machines lies between 1 and 2 A.

The function of the objective lens in an electron microscope is
to perform a Fourier synthesis of the Bragg-diffracted electron
beams scattered (in transmission) by a thin crystal, in order to
produce a real-space electron image in the plane r. This electron
image intensity can be written

ly(r))? = |flIf(u) exp{2miu - r}P(u) exp{ix(u)} du 2, (4.3.8.1)

where W(u) represents the complex amplitude of the diffracted
wave after diffraction in the crystal as a function of the
reciprocal-lattice vector u [magnitude (2sin#)//] in the plane
perpendicular to the beam, so that the wavevector of an incident
plane wave is written K, = k, 4+ 27u. Following the conventlon
of Section 2.5.1 in IT B (1992) we write |K)| =274 ". The
function x(u) is the phase factor for the objective-lens transfer
function and P(u) describes the effect of the objective aperture:

_ for |u| < u,
P(u) = {O for |u| > u,.

For a periodic object, the image wavefunction is given by
summing the contributions from the set of reciprocal-lattice
points, g, so that
2

ly(r))? = (4.3.8.2)

For atomic resolution, with u, ~ IA*', it is apparent that, for all
but the simplest structures and smallest unit cells, this synthesis
will involve many hundreds of Bragg beams. A scattering
calculation must involve an even larger number of beams than
those that contribute resolvable detail to the image, since, as
described in Section 2.5.1 in IT B (1992), all beams interact
strongly through multiple coherent scattering. The theoretical
basis for HREM image interpretation is therefore the dynamical
theory of electron diffraction in the transmission (or Laue)
geometry [see Chapter 5.2 in IT B (1992)]. The resolution of
HREM images is limited by the aberrations of the objective
electron lens (notably spherical aberration) and by electronic
instabilities. An intuitive understanding of the complicated effect
of these factors on image formation from multiply scattered
Bragg beams is generally not possible. To provide a basis for
understanding, therefore, the following section treats the
simplified case of few-beam ‘lattice-fringe’ images, in order to
expose the relationship between the crystal potential, its structure
factors, electron-lens aberrations, and the electron image.

Image formation in the transmission electron microscope is
conventionally treated by analogy with the Abbe theory of
coherent optical imaging. The overall process is subdivided as
follows. (a) The problem of beam-specimen interaction for a
collimated kilovolt electron beam traversing a thin parallel-sided
slab of crystal in a given orientation. The solution to this problem
gives the elastically scattered dynamical electron wavefunction
Y(r), where r is a two-dimensional vector lying in the
downstream surface of the slab. Computer algorithms for
dynamical scattering are described in Section 4.3.6. (b) The
effects of the objective lens are incorporated by multiplying the
Fourier transform of /(r) by a function 7(u), which describes
both the wavefront aberration of the lens and the diffraction-
limiting effects of any apertures. The dominant aberrations are
spherical aberration, astigmatism, and defect of focus. The
image intensity is then formed from the modulus squared of the
Fourier transform of this product. (c) All partial coherence
effects may be incorporated by repeating this procedure for each
of the component energies and directions that make up the
illumination from an extended electron source, and summing the
resulting intensities. Because this procedure requires a separate
dynamical calculation for each component direction of the
incident beam, a number of useful approximations of restricted
validity have been developed; these are described in Subsection
4.3.8.4. This treatment of partial coherence assumes that a
perfectly incoherent effective source can be identified. For field-
emission HREM instruments, a coherent sum (over directions)
of complex image wavefunctions may be required.

General treatments of the subject of HREM can be found in
the texts by Cowley (1981) and Spence (1988). The sign
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Fig. 4.3.8.2. Imaging conditions for few-beam lattice images. For
three-beam axial imaging shown in (c), the formation of half-period
fringes is also shown.
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conventions used throughout the following are consistent with
the standard crystallographic convention of Section 2.5.1 of IT B
(1992), which assumes a plane wave of form exp{—i(k - r — wt)}
and so is consistent with X-ray usage.

4.3.8.2. Lattice-fringe images

We consider few-beam lattice images, in order to understand
the effects of instrumental factors on electron images, and to
expose the conditions under which they faithfully represent the
scattering object. The case of two-beam lattice images is
instructive and contains, in simplified form, most of the features
seen in more complicated many-beam images. These fringes
were first observed by Menter (1956) and further studied in the
pioneering work of Komoda (1964) and others [see Spence
(1988) for references to early work]. The electron-microscope
optic-axis orientation, the electron beam, and the crystal setting
are indicated in Fig. 4.3.8.2. If an objective aperture is used that
excludes all but the two beams shown from contributing to the
image, equation (4.3.8.2) gives the image intensity along
direction g for a centrosymmetric crystal of thickness ¢ as

I(x,1) = W) + [,
+2|%[|¥,| cos{2mx/dy + x(ug)ng(r) — no(1)}. (4.3.8.3)

The Bragg-diffracted beams have complex amplitudes
lI/_g(t) = |J/g(t)|§xp{irzg(t)}. The lattice-plane perlod.ls d, in
direction g [Miller indices (kkl)]. The lens-aberration phase
function, including only the effects of defocus Af and spherical
aberration (coefficient C,), is given by

x(ug) = Q) (Af22u2/2) + C2tul/4). (4.3.8.4)

The effects of astigmatism and higher-order aberrations have
been ignored. The defocus, Af, is negative for the objective lens
weakened (i.e. the focal length increased, giving a bright first
Fresnel-edge fringe). The magnitude of the reciprocal-lattice
vector u, = d;' = (2sinfz)/4, where 0y is the Bragg angle. If
these two Bragg beams were the only beams excited in the crystal
(a poor approximation for quantitative work), their amplitudes
would be given by the ‘two-beam’ dynamical theory of electron
diffraction as

Wy(t) = {cos[t(1 + w?)' 2 /&,] + iw(1 + w?) ™'/
x sin[mt(1 +w?)"/? /£,]} exp(—ims,t)
W, (1) = i(1 +w?) 2 sin[rr(1 + w?)' 2 /g,]

X exp(—is,t), (4.3.8.5)

where &, is the two-beam extinction distance, V, = 7/(0§,) is a
Fourier coefficient of crystal potential, s, is the excitation error
(see Fig. 4.3.8.2), w = s,&,, and the interaction parameter o is
defined in Section 2.5.1 of IT B (1992).

The two-beam image intensity given by equation (4.3.8.3)
therefore depends on the parameters of crystal thickness (z),
orientation (s,), structure factor (V,), objective-lens defocus Af,
and spherical-aberration constant C,. We consider first the
variation of lattice fringes with crystal thickness in the two-beam
approximation (Cowley, 1959; Hashimoto, Mannami & Naiki,
1961). At the exact Bragg condition (s, = 0), equations (4.3.8.5)
and (4.3.8.3) give

I(x,1) = 1 —sin(2nt/&,) sin [27x/d + x(u,)]. (4.3.8.6)

If we consider a wedge-shaped crystal with the electron beam
approximately normal to the wedge surface and edge, and take x
and g parallel to the edge, this equation shows that sinusoidal
lattice fringes are expected whose contrast falls to zero (and

reverses sign) at thicknesses of 7, = ng,/2. This apparent abrupt
translation of fringes (by d/2 in the direction x) at particular
thicknesses is also seen in some experimental many-beam
images. The effect of changes in focus (due perhaps to variations
in lens current) is seen to result in a translation of the fringes (in
direction x), while time-dependent variations in the accelerating
voltage have a similar effect. Hence, time-dependent variations
of the lens focal length or the accelerating voltage result in
reduced image contrast (see below). If the illumination makes a
small angle o = Ju’ with the optic axis, the intensity becomes

I(x, o) = [Wol” + [, > 4 2|&,||¥,]
x cos[x(—uy —u') — x(u') + 2mx/d + ny(t) — no(t)].

For a uniformly intense line source subtending a semiangle 6,
the total lattice-fringe intensity is

I(x) = (1/6,) [ I(x, a)da.

The resulting fringe visibility C = (I,,x — Inin)/ Tmax T Imin) 18
proportional to C = (sin8)/B8, where B =2mAf6./d. The
contrast falls to zero for 8 = m, so that the range of focus over
which fringes are expected is Az = d/0,. This is the approximate
depth of field for lattice images due to the effects of the finite
source size alone.

The case of three-beam fringes in the axial orientation is of
more practical importance [see Fig. 4.3.8.2(b)]. The image
intensity for ¥, = W_, and s, = s_, is

1(x, 1) = |Wol” + 2|W,* + 2|¥, | cos(4mx/d)
+ 4%, ||¥,| cos(2rx/d)
X COS[X(”g) + ng(t) - 7’/O(l‘)]

The lattice image is seen to consist of a constant background plus
cosine fringes with the lattice spacing, together with cosine
fringes of half this spacing. The contribution of the half-spacing
fringes is independent of instrumental parameters (and therefore
of electronic instabilities if 6, = 0). These fringes constitute an
important HREM image artifact. For kinematic scattering,
Ng(t) — no(#) = —7m/2 and only the half-period fringes will then
be seen if x(u,) = nm, or for focus settings

(4.3.8.7)

Af =it — Ciu2)2. (4.3.8.8)
Fig. 4.3.8.2(c) indicates the form of the fringes expected for two
focus settings with differing half-period contributions. As in the
case of two-beam fringes, dynamical scattering may cause ¥ to
be severely attenuated at certain thicknesses, resulting also in a
strong half-period contribution to the image.

Changes of 27 in x(u,) in equation (4.3.8.7) leave I(x, 1)
unchanged. Thus, changes of defocus by amounts

Afy = 2n/(Jai}) (4.3.8.9)

or changes in C; by

AC, = 4n/(2’ug) (4.3.8.10)

yield identical images. The images are thus periodic in both Af
and C,. This is a restricted example of the more general
phenomenon of n-beam Fourier imaging discussed in Subsection
4.3.8.3.

We note that only a single Fourier period will be seen if Af; is
less than the depth of field Az. This leads to the approximate
condition ®, > A/d, which, when combined with the Bragg law,
indicates that a single period only of images will be seen when
adjacent diffraction discs just overlap.
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