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4. PRODUCTION AND PROPERTIES OF RADIATIONS

The axial three-beam fringes will coincide with the lattice
planes, and show atom positions as dark if x(u,) = (2n — 1/2)m
and 1,(t) — n,(t) = —7/2. This total phase shift of —m between
¥, and the scattered beams is the desirable imaging condition for
phase contrast, giving rise to dark atom positions on a bright
background. This requires

C, = (4n — 1)/(Pug) — 24f /(Puy

as a condition for identical axial three-beam lattice images for
n=0,1,2,.... This family of lines has been plotted in Fig.
4.3.8.3 for the (111) planes of silicon. Dashed lines denote the
locus of ‘white-atom’ images (reversed contrast fringes), while
the dotted lines indicate half-period images. In practice, the
depth of field is limited by the finite illumination aperture 6., and
few-beam lattice-image contrast will be a maximum at the
stationary-phase focus setting, given by

Afy = —C2ul. (4.3.8.11)

This choice of focus ensures Vx(u) = 0 for u = u,, and thus
ensures the most favourable trade-off between increasing 6. and
loss of fringe contrast for lattice planes g. Note that Af; is not
equal to the Scherzer focus Af, (see below). This focus setting is
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Fig. 4.3.8.3. A summary of three- (or five-) beam axial imaging
conditions. Here, Af; is the Fourier image period, Af; the stationary-
phase focus, C,(0) the image period in C,, and a scattering phase of
—m/2 is assumed. The lines are drawn for the (111) planes of silicon
at 100kV with . = 1.4 mrad.
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Fig. 4.3.8.4. The contrast of few-beam lattice images as a function of
focus in the neighbourhood of the stationary-phase focus [see Olsen &
Spence (1981)].

also indicated on Fig. 4.3.8.3, and indicates the instrumental
conditions which produce the most intense (111) three- (or five-)
beam axial fringes in silicon. For three-beam axial fringes of
spacing d, it can be shown that the depth of field Az is
approximately

Az = (In2)"*d/6 7. (4.3.8.12)

This depth of field, within which strong fringes will be seen, is
indicated as a boundary on Fig. 4.3.8.3. Thus, the finer the
image detail, the smaller is the focal range over which it may be
observed, for a given illumination aperture ..

Fig. 4.3.8.4 shows an exact dynamical calculation for the
contrast of three-beam axial fringes as a function of Af in the
neighbourhood of Af,. Both reversed contrast and half-period
fringes are noted. The effects of electronic instabilities on lattice
images are discussed in Subsection 4.3.8.3. It is assumed above
that 6, is sufficiently small to allow the neglect of any changes in
diffraction conditions (Ewald-sphere orientation) within ©..
Under a similar approximation but without the approximations of
transfer theory, Desseaux, Renault & Bourret (1977) have
analysed the effect of beam divergence on two-dimensional five-
beam axial lattice fringes.

When two-dimensional patterns of fringes are considered, the
Fourier imaging conditions become more complex (see Subsec-
tion 4.3.8.3), but half-period fringe systems and reversed-
contrast images are still seen. For example, in a cubic
projection, a focus change of Af;/2 results in an image shifted
by half a unit cell along the cell diagonal. It is readily shown that

explix(Af)] = explix(Af + Afy)]

it Afy = 2na*/ A+ 2mb*/). when n, m are integers and a and b
are the two dimensions of any orthogonal unit cell that can be
chosen for ¥, (x, y). Thus, changes in focus by Af;(n, m) produce
identical images in crystals for which such a cell can be chosen,
regardless of the number of beams contributing (Cowley &
Moodie, 1960).

For closed-form expressions for the few-beam (up to 10
beams) two-dimensional dynamical Bragg-beam amplitudes ¥,
in orientations of high symmetry, the reader is referred to the
work of Fukuhara (1966).

4.3.8.3. Crystal structure images

We define a crystal structure image as a high-resolution
electron micrograph that faithfully represents a projection of a
crystal structure to some limited resolution, and which was
obtained using instrumental conditions that are independent of
the structure, and so require no a priori knowledge of the
structure. The resolution of these images is discussed in
Subsection 4.3.8.6, and their variation with instrumental
parameters in Subsection 4.3.8.4.

Equation (4.3.8.2) must now be modified to take account of
the finite electron source size used and of the effects of the range
of energies present in the electron beam. For a perfect crystal we
may write, as in equation (2.5.1.36) in IT B (1992),

I(r) = [[ 1y, Af, ) G() B(Af, w)du' dAf (4.3.8.13a)

for the total image intensity due to an electron source whose
normalized distribution of wavevectors is G(u’), where u’ has
components #;, v;, and which extends over a range of energies
corresponding to the distribution of focus B(Af, u). If x is also
assumed to vary linearly across 6, and changes in the diffraction
conditions over this range are assumed to make only negligible
changes in the diffracted-beam amplitude ¥,, the expression for
a Fourier coefficient of the total image intensity /;(r) becomes
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4.3. ELECTRON DIFFRACTION

I, = Xh: ¥y exp{—ix(h)}y{Vx(h) — Vx(h — g)}

x Yi_gexplix(th — g)} i (h* — |h — g*)*},

where y(h) and B(g) are the Fourier transforms of G(u’) and
B(Af, W), respectively.

For the imaging of very thin crystals, and particularly for the
case of defects in crystals, which are frequently the objects of
particular interest, we give here some useful approximations for
HREM structure images in terms of the continuous projected
crystal potential

(4.3.8.13b)

p(x,y) = (1/Z)g’<ﬂ(x,y, z)dz,

where the projection is taken in the electron-beam direction. A
brief summary of the use of these approximations is included in
Section 2.5.1 of IT B (1992) and computing methods are
discussed in Subsection 4.3.8.5 and Section 4.3.4.

The projected-charge-density (PCD) approximation (Cowley
& Moodie, 1960) gives the HREM image intensity (for the
simplified case where C; = 0) as

Ix,y) = 1+ (Af 0/ 2me0e)p, (%, ),

where p,(x,y) is the projected charge density for the specimen
(including the nuclear contribution) and is related to ¢,(x,y)
through Poisson’s equation. Here, ¢,¢ is the specimen dielectric
constant. This approximation, unlike the weak-phase-object
approximation (WPO), includes multiple scattering to all orders
of the Born series, within the approximation that the component
of the scattering vector is zero in the beam direction (a ‘flat’
Ewald sphere). Contrast is found to be proportional to defocus
and to p,(x,y). The failure conditions of this approximation are
discussed by Lynch, Moodie & O’Keefe (1975); briefly, it fails
for x(uy) > 7/2 (and hence if C,, Af or u, becomes large) or for
large thicknesses ¢ (f < 7nm is suggested for specimens of
medium atomic weight and 4 =0.037A). The PCD result
becomes increasingly accurate with increasing accelerating
voltage for small C,.

The WPO approximation has been used extensively in
combination with the Scherzer-focus condition (Scherzer,
1949) for the interpretation of structure images (Cowley &
Iijima, 1972). This approximation neglects multiple scattering of
the beam electron and thereby allows the application of the
methods of linear transfer theory from optics. The image
intensity is then given, for plane-wave illumination, by

I(x,y) = 1+ 20¢,(x, y) * F{sin x(u, v)P(u, v)}
=1+ 20¢,(x,y) * S(x,y),

(4.3.8.13¢)

(4.3.8.14)

where J denotes Fourier transform, % denotes convolution, and u
and v are orthogonal components of the two-dimensional
scattering vector u. The function S(x,y) is sharply peaked and
negative at the ‘Scherzer focus’

Af = Af, =1.2(C,)"? (4.3.8.15q)

and the optimum objective aperture size
6, = 1.5(1/C,)"*. (4.3.8.15b)

It forms the impulse response of an electron microscope for
phase contrast. Contrast is found to be proportional to ¢, and to
the interaction parameter o, which increases very slowly with
accelerating voltage above about 500 keV. The point resolution
[see Subsection 2.5.1.9 of IT' B (1992) and Subsection 4.3.8.6] is
conventionally defined from equation (4.3.8.15b) as 1/6,, or

d, = 0.66 C//*3¥*, (4.3.8.16)

The occurrence of appreciable multiple scattering, and
therefore of the failure of the WPO approximation, depends on
specimen thickness, orientation, and accelerating voltage.
Detailed comparisons between accurate multiple-scattering
calculations, the PCD approximation, and the WPO approxima-
tion can be found in Lynch, Moodie & O’Keefe (1975) and Jap &
Glaeser (1978). As a very rough guide, equation (4.3.8.14) can
be expected to fail for light elements at 100 keV and thicknesses
greater than about 5.0 nm. Multiple-scattering effects have been
predicted within single atoms of gold at 100 keV.

The WPO approximation may be extended to include the
effects of an extended source (partial spatial coherence) and a
range of incident electron-beam energies (temporal coherence).
General methods for incorporating these effects in the presence
of multiple scattering are described in Subsection 4.3.8.5. Under
the approximations of linear imaging outlined below, it can be
shown (Wade & Frank, 1977; Fejes, 1977) that sin x(u, v)P(u, v)
in equation (4.3.8.14) may be replaced by

A'(w) = P(u) explix(w)]exp(—n* A*2*u* /2)(V x/270)
= P(u) exp[ix(u)] exp(im> A2 27 u*/2) exp(—mu3q)
(4.3.8.17)

if astigmatism is absent. Here, wuw=uwi+vj and
lul =26// = (® ++v*)"*. In addition, y(uw) is the Fourier
transform of the source intensity distribution (assumed
Gaussian), so that y(Vyx/2m) is small in regions where the
slope of x(u’) is large, resulting in severe attenuation of these
spatial frequencies. If the illuminating beam divergence ©, is
chosen as the angular half width for which the distribution of
source intensity falls to half its maximum value, then

6, = Juy(In2)"/2.
The quantity ¢ is defined by
qg=(C 0 + Afiu) + T2,

where T2 expresses a coupling between the effects of partial
spatial coherence and temporal coherence. This term can
frequently be neglected under HREM conditions [see Wade &
Frank (1977) for details]. The damping envelope due to
chromatic effects is described by the parameter

A =C.0=CAlo*(V)I/V§ + [45” )]/ T
o (E)/ES) ", (4.3.8.19)

where o%(V,) and o*(l,) are the variances in the statistically
independent fluctuations of accelerating voltage V, and objec-
tive-lens current I,. The r.m.s. value of the high voltage
fluctuation is equal to the standard deviation o(V,) = [o-Z(VO)]1 .
The full width at half-maximum height of the energy distribution
of electrons leaving the filament is

AE =2(21n2)"?0(E,) = 2.355[0*(E,)]"/*. (4.3.8.20)

Here, C. is the chromatic aberration constant of the objective
lens.

Equations (4.3.8.14) and (4.3.8.17) indicate that under linear
imaging conditions the transfer function for HREM contains a
chromatic damping envelope more severely attenuating than a
Gaussian of width

(4.3.8.18)

Up(4) = [2/n24]'"7,

which is present in the absence of any objective aperture P(u).
The resulting resolution limit
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d, = [n\A/2]'? (4.3.8.21)

is known as the information resolution limit (see Subsection
4.3.8.6) and depends on electronic instabilities and the thermal-
energy spread of electrons leaving the filament. The reduction in
the contribution of particular diffracted beams to the image due
to limited spatial coherence is minimized over those extended
regions for which Vx(u) is small, called passbands, which occur
when

Af, =[C,A(8n+3)/2]"%. (4.3.8.22)

The Scherzer focus A f, corresponds to n = 0. These passbands
become narrower and move to higher u values with increasing n,
but are subject also to chromatic damping effects. The passbands
occur between spatial frequencies U; and U,, where

U, = CoV4 7™M [(8n +2) /2] + 1)1, (4.3.8.23)

Their use for extracting information beyond the point resolution
of an electron microscope is further discussed in Subsection
4.3.8.6.

Fig. 4.3.8.5 shows transfer functions for a modern instrument
for n =0 and 1. Equations (4.3.8.14) and (4.3.8.17) provide a
simple, useful, and popular approach to the interpretation of
HREM images and valuable insights into resolution-limiting
factors. However, it must be emphasized that these results apply
only (amongst other conditions) for &, >> &, (in crystals) and
therefore do not apply to the usual case of strong multiple
electron scattering. Equation (4.3.8.13b) does not make this
approximation. In real space, for crystals, the alignment of
columns of atoms in the beam direction rapidly leads to phase

Cs=1mm
Y A4Af=-49.7 nm
400 kV
A=8.0nm
0¢=0.8 mR

2 4
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Fig. 4.3.8.5. (@) The transfer function for a 400kV electron microscope
with a point resolution of 1.7 A at the Scherzer focus; the curve is
based on equation (4.3.8.17). In (b) is shown a transfer function for
similar conditions at the first ‘passband’ focus [z =1 in equation
(4.3.8.22)].

changes in the electron wavefunction that exceed /2, leading to
the failure of equation (4.3.8.14). Accurate quantitative
comparisons of experimental and simulated HREM images
must be based on equation (4.3.8.13a), or possibly (4.3.8.13b),
with Y(u’, Af, r) obtained from many-beam dynamical calcula-
tions of the type described in Subsection 4.3.8.5.

For the structure imaging of specific types of defects and
materials, the following references are relevant. (i) For line
defects viewed parallel to the line, d’Anterroches & Bourret
(1984); viewed normal to the line, Alexander, Spence, Shindo,
Gottschalk & Long (1986). (ii) For problems of variable lattice
spacing (e.g. spinodal decomposition), Cockayne & Gronsky
(1981). (iii) For point defects and their ordering, in tunnel
structures, Yagi & Cowley (1978); in semiconductors,
Zakharov, Pasemann & Rozhanski (1982); in metals, Fields &
Cowley (1978). (iv) For interfaces, see the proceedings reported
in Ultramicroscopy (1992), Vol. 40, No. 3. (v) For metals,
Lovey, Coene, Van Dyck, Van Tendeloo, Van Landuyt &
Amelinckx (1984). (vi) For organic crystals, Kobayashi,
Fujiyoshi & Uyeda (1982). (vii) For a general review of
applications in solid-state chemistry, see the collection of papers
reported in Ultramicroscopy (1985), Vol. 18, Nos. 1-4. (viii)
Radiation-damage effects are observed at atomic resolution by
Horiuchi (1982).

4.3.8.4. Parameters affecting HREM images

The instrumental parameters that affect HREM images
include accelerating voltage, astigmatism, optic-axis alignment,
focus setting Af, spherical-aberration constant C;, beam
divergence 0., and chromatic aberration constant C,. Crystal
parameters influencing HREM images include thickness,
absorption, ionicity, and the alignment of the crystal zone axis
with the beam, in addition to the structure factors and atom
positions of the sample. The accurate measurement of electron
wavelength or accelerating voltage has been discussed by many
workers, including Uyeda, Hoier and others [see Fitzgerald &
Johnson (1984) for references]. The measurement of Kikuchi-
line spacings from crystals of known structure appears to be the
most accurate and convenient method for HREM work, and
allows an overall accuracy of better than 0.2% in accelerating
voltage. Fluctuations in accelerating voltage contribute to the
chromatic damping term A in equation (4.3.8.19) through the
variance o*(V,). With the trend toward the use of higher
accelerating voltages for HREM work, this term has become
especially significant for the consideration of the information
resolution limit [equation (4.3.8.21)].

Techniques for the accurate measurement of astigmatism and
chromatic aberration are described by Spence (1988). The
displacement of images of small crystals with beam tilt may be
used to measure C;; alternatively, the curvature of higher-order
Laue-zone lines in CBED patterns has been used. The method of
Budinger & Glaeser (1976) uses a similar dark-field image-
displacement method to provide values for both Af and C;, and
appears to be the most convenient and accurate for HREM work.
The analysis of optical diffractograms initiated by Thon and co-
workers from HREM images of thin amorphous films provides
an invaluable diagnostic aid for HREM work; however, the
determination of C; by this method is prone to large errors,
especially at small defocus. Diffractograms provide a rapid
method for the determination of focus setting (see Krivanek,
1976) and in addition provide a sensitive indicator of specimen
movement, astigmatism, and the damping-envelope constants A
and O,.
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