International Tables for Crystallography (2006). Vol. C. ch. 4.4, pp. 430-487
https://doi.org/10.1107/97809553602060000594

Chapter 4.4. Neutron techniques

Contents

  • 4.4. Neutron techniques  (pp. 430-487) | html | pdf | chapter contents |
    • 4.4.1. Production of neutrons  (pp. 430-431) | html | pdf |
    • 4.4.2. Beam-definition devices  (pp. 431-443) | html | pdf |
      • 4.4.2.1. Introduction  (p. 431) | html | pdf |
      • 4.4.2.2. Collimators  (pp. 431-432) | html | pdf |
      • 4.4.2.3. Crystal monochromators  (pp. 432-435) | html | pdf |
      • 4.4.2.4. Mirror reflection devices  (pp. 435-438) | html | pdf |
        • 4.4.2.4.1. Neutron guides  (pp. 435-436) | html | pdf |
        • 4.4.2.4.2. Focusing mirrors  (p. 436) | html | pdf |
        • 4.4.2.4.3. Multilayers  (pp. 436-437) | html | pdf |
        • 4.4.2.4.4. Capillary optics  (pp. 437-438) | html | pdf |
      • 4.4.2.5. Filters  (p. 438) | html | pdf |
      • 4.4.2.6. Polarizers  (pp. 438-442) | html | pdf |
        • 4.4.2.6.1. Single-crystal polarizers  (pp. 438-439) | html | pdf |
        • 4.4.2.6.2. Polarizing mirrors  (p. 440) | html | pdf |
        • 4.4.2.6.3. Polarizing filters  (pp. 440-441) | html | pdf |
        • 4.4.2.6.4. Zeeman polarizer  (p. 442) | html | pdf |
      • 4.4.2.7. Spin-orientation devices  (pp. 442-443) | html | pdf |
        • 4.4.2.7.1. Maintaining the direction of polarization  (p. 442) | html | pdf |
        • 4.4.2.7.2. Rotation of the polarization direction  (p. 442) | html | pdf |
        • 4.4.2.7.3. Flipping of the polarization direction  (pp. 442-443) | html | pdf |
      • 4.4.2.8. Mechanical choppers and selectors  (p. 443) | html | pdf |
    • 4.4.3. Resolution functions  (pp. 443-444) | html | pdf |
    • 4.4.4. Scattering lengths for neutrons  (pp. 444-454) | html | pdf |
      • 4.4.4.1. Scattering lengths  (p. 444) | html | pdf |
      • 4.4.4.2. Scattering and absorption cross sections  (p. 452) | html | pdf |
      • 4.4.4.3. Isotope effects  (pp. 452-453) | html | pdf |
      • 4.4.4.4. Correction for electromagnetic interactions  (p. 453) | html | pdf |
      • 4.4.4.5. Measurement of scattering lengths  (p. 453) | html | pdf |
      • 4.4.4.6. Compilation of scattering lengths and cross sections  (pp. 453-454) | html | pdf |
    • 4.4.5. Magnetic form factors  (pp. 454-461) | html | pdf |
    • 4.4.6. Absorption coefficients for neutrons  (p. 461) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 4.4.1.1. A plane view of the installation at the Institut Laue–Langevin, Grenoble  (p. 430) | html | pdf |
      • Fig. 4.4.1.2. Schematic diagram for performing diffraction experiments at steady-state and pulsed neutron sources  (p. 431) | html | pdf |
      • Fig. 4.4.2.1. Two methods by which artificial mosaic monochromators can be constructed: (a) out of a stack of crystalline wafers, each with a mosaicity close to the global value  (p. 434) | html | pdf |
      • Fig. 4.4.2.2. Reciprocal-lattice representation of the effect of a monochromator with reciprocal-lattice vector τ on the reciprocal-space element of a beam with divergence α  (p. 434) | html | pdf |
      • Fig. 4.4.2.3. Momentum-space representation of Bragg scattering from a crystal moving (a) perpendicular and (b) parallel to the diffracting planes with a velocity vk  (p. 435) | html | pdf |
      • Fig. 4.4.2.4. In a curved neutron guide, the transmission becomes λ dependent: (a) the possible types of reflection (garland and zig-zag), the direct line-of-sight length, the critical angle θ*, which is related to the characteristic wavelength [\lambda^*=\theta^*{\sqrt{\pi/Nb_{\rm coh}}}]; (b) transmission across the exit of the guide for different wavelengths, normalized to unity at the outside edge; (c) total transmission of the guide as a function of λ  (p. 436) | html | pdf |
      • Fig. 4.4.2.5. Illustration of how a variation in the bilayer period can be used to produce a monochromator, a broad-band device, or a supermirror  (p. 437) | html | pdf |
      • Fig. 4.4.2.6. Typical applications of polycapillary devices: (a) lens used to refocus a divergent beam; (b) half-lens to produce a nearly parallel beam or to focus a nearly parallel beam; (c) a compact bender  (p. 437) | html | pdf |
      • Fig. 4.4.2.7. Total cross section for beryllium in the energy range where it can be used as a filter for neutrons with energy below 5 meV (Freund, 1983)  (p. 438) | html | pdf |
      • Fig. 4.4.2.8. Energy-dependent cross section for a neutron beam incident along the c axis of a pyrolytic graphite filter  (p. 439) | html | pdf |
      • Fig. 4.4.2.9. Geometry of a polarizing monochromator showing the lattice planes (hkl) with |FN| = |FM|, the direction of P and [\boldmu], the expected spin direction and intensity  (p. 439) | html | pdf |
      • Fig. 4.4.2.10. Measured reflectivity curve of an FeCoV/TiZr polarizing supermirror with an extended angular range of polarization of three times that of γc(Ni) for neutrons without spin flip, ↑↑, and with spin flip, ↑↓  (p. 440) | html | pdf |
    • Tables
      • Table 4.4.2.1. Some important properties of materials used for neutron monochromator crystals  (p. 433) | html | pdf |
      • Table 4.4.2.2. Neutron scattering-length densities, Nbcoh, for some commonly used materials  (p. 435) | html | pdf |
      • Table 4.4.2.3. Characteristics of some typical elements and isotopes used as neutron filters  (p. 439) | html | pdf |
      • Table 4.4.2.4. Properties of polarizing crystal monochromators  (p. 440) | html | pdf |
      • Table 4.4.2.5. Scattering-length densities for some typical materials used for polarizing multilayers  (p. 441) | html | pdf |
      • Table 4.4.4.1. Bound scattering lengths, b, in fm and cross sections, σ, in barns (1 barn = 100 fm2) of the elements and their isotopesinteractive version  (pp. 445-452) | html | pdf |
      • Table 4.4.5.1. j0〉 form factors for 3d transition elements and their ions  (p. 454) | html | pdf |
      • Table 4.4.5.2. j0〉 form factors for 4d atoms and their ions  (p. 455) | html | pdf |
      • Table 4.4.5.3. j0〉 form factors for rare-earth ions  (p. 455) | html | pdf |
      • Table 4.4.5.4. j0〉 form factors for actinide ions  (p. 455) | html | pdf |
      • Table 4.4.5.5. j2〉 form factors for 3d transition elements and their ions  (p. 456) | html | pdf |
      • Table 4.4.5.6. j2〉 form factors for 4d atoms and their ions  (p. 457) | html | pdf |
      • Table 4.4.5.7. j2〉 form factors for rare-earth ions  (p. 457) | html | pdf |
      • Table 4.4.5.8. j2〉 form factors for actinide ions  (p. 457) | html | pdf |
      • Table 4.4.5.9. j4〉 form factors for 3d atoms and their ions  (p. 458) | html | pdf |
      • Table 4.4.5.10. j4〉 form factors for 4d atoms and their ions  (p. 459) | html | pdf |
      • Table 4.4.5.11. j4〉 form factors for rare-earth ions  (p. 459) | html | pdf |
      • Table 4.4.5.12. j4〉 form factors for actinide ions  (p. 459) | html | pdf |
      • Table 4.4.5.13. j6〉 form factors for rare-earth ions  (p. 460) | html | pdf |
      • Table 4.4.5.14. j6〉 form factors for actinide ions  (p. 460) | html | pdf |
      • Table 4.4.6.1. Absorption of the elements for neutrons  (p. 461) | html | pdf |