International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 5.3, p. 517

Section 5.3.3.2.2. Two-circle diffractometer

E. Gałdeckaa

a Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 937, 50-950 Wrocław 2, Poland

5.3.3.2.2. Two-circle diffractometer

| top | pdf |

Lattice-parameter determination by the use of the two-circle (inclination) diffractometer, the so-called `Weissenberg diffractometer', is more troublesome than by means of the four-circle one, because only two rotations [[\omega] (or [\varphi]) of the crystal, and [2\theta] (or γ) of the detector] are motor-driven under computer control, while two inclination angles (μ for the crystal and ν for the detector) must be set by hand.

The problem of application of the popular two-circle (Eulerian-cradle) diffractometer for measurements similar to those presented in §5.3.3.2.1[link] was discussed by Clegg & Sheldrick (1984[link]). The main idea of their paper was to introduce equations combining setting angles, obtained for selected reflections, with reciprocal-cell parameters, for calculating the latter. The authors started with zero-layer reflections for which, for a crystal mounted about the c axis, [\eqalignno{ \sin\theta& = (x^2+y^2){}^{1/2}, &(5.3.3.4a) \cr \omega &= \omega_0+\theta-\tan^{-1} (\,y,x), &(5.3.3.4b)}%fd5.3.3.4b]where [\eqalignno{ x &= \lambda(ha^*+kb^*\cos\gamma^*)/2, &(5.3.3.4c) \cr y&= (\lambda kb^*\sin\gamma^*)/2, &(5.3.3.4d)}%fd5.3.3.4d]and [\omega_0] is a zero-point correction.

The remaining parameter c had to be determined from the inclination angle μ, measured by hand. The use of zero-layer reflections was advantageous, apart from the simplicity of the formulae (5.3.3.4a[link],b[link],c[link],d[link]), because they were less affected by crystal misalignment than were upper-layer reflections. However, a zero-point correction [\omega_0] for [\omega] had to be performed. For this purpose, the [\omega_0] value was treated as an additional parameter in off-line least-squares refinement.

As the next step, the authors introduced equations for a general crystal orientation instead of an aligned crystal (cf. §5.3.3.2.1[link]) and derived equations defining the setting angles for an arbitrary reflection useful for data collection from a randomly oriented crystal if preliminary lattice-parameter values had been assumed. This made possible measurements of reflections on a range of layers; only one crystal mounting was required. The matrix formulae suitable for Eulerian-geometry diffractometers are also given by Kheiker (1973[link], Chap. 3, Section 9) and Gabe (1980[link]).

In order to perform precise refinement of all six cell parameters, Clegg & Sheldrick (1984[link]) used least squares with empirical weights: [W_{hkl}=1/\sqrt {\omega_{hkl}}, \eqno (5.3.3.5)]where [\omega_{hkl}] is the width of the hkl reflection. An additional (third) motor to control the μ circle was proposed.

The authors point out that the two-circle diffractometer, owing to its simpler construction in comparison with the four-circle one, is well suited to operations that require additional attachments; for example, for low-temperature operation.

References

First citation Clegg, W. & Sheldrick, G. M. (1984). The refinement of unit cell parameters from two-circle diffractometer measurements. Z. Kristallogr. 167, 23–27.Google Scholar
First citation Gabe, E. J. (1980). Diffractometer control with minicomputers. Computing in crystallography, edited by R. Diamond, S. Ramaseshan & K. Venkatesan, pp. 1.01–1.18. Bangalore: Indian Academy of Sciences.Google Scholar
First citation Kheiker, D. M. (1973). Rentgenowskaya diffraktometriya monokristallow, Chaps. 3, 4, 5. Leningrad: Mashinostroyenie.Google Scholar








































to end of page
to top of page