International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 6.1, pp. 554-595
https://doi.org/10.1107/97809553602060000600

Chapter 6.1. Intensity of diffracted intensities

P. J. Brown,a A. G. Fox,b E. N. Maslen,e M. A. O'Keefec and B. T. M. Willisd

a Institut Laue–Langevin, Avenue des Martyrs, BP 156X, F-38042 Grenoble CEDEX, France,bCenter for Materials Science and Engineering, Naval Postgraduate School, Monterey, CA 93943-5000, USA,cNational Center for Electron Microscopy, Lawrence Berkeley National Laboratory MS-72, University of California, Berkeley, CA 94720, USA,dChemical Crystallography Laboratory, University of Oxford, 9 Parks Road, Oxford OX1 3PD, England, and eCrystallography Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia

References

First citation Abramowitz, M. & Stegun, I. A. (1964). Handbook of mathematical functions. National Bureau of Standards Publication AMS 55.Google Scholar
First citation Ahlrichs, R. & Taylor, P. R. (1981). The choice of Gaussian basis sets for molecular electronic structure calculations. J. Chim. Phys. 78, 316–323.Google Scholar
First citation Altmann, S. L. & Cracknell, A. P. (1965). Lattice harmonics. I. Cubic groups. Rev. Mod. Phys. 37, 19–32.Google Scholar
First citation Atoji, M., Watanabe, T. & Lipscomb, W. N. (1953). The X-ray scattering from a hindered rotator. Acta Cryst. 6, 62–66.Google Scholar
First citation Avery, J. & Watson, K. J. (1977). Generalized X-ray scattering factors. Simple closed-form expressions for the one-centre case with Slater-type orbitals. Acta Cryst. A33, 679–680.Google Scholar
First citation Bacon, G. E. (1975). Neutron diffraction, 3rd ed. Oxford: Clarendon Press.Google Scholar
First citation Bellman, R. (1961). A brief introduction to theta functions. New York: Holt, Reinhart and Winston.Google Scholar
First citation Blume, M. (1963). Polarization effects in the magnetic elastic scattering of slow neutrons. Phys. Rev. 130, 1670–1676.Google Scholar
First citation Chidambaram, R. & Brown, G. M. (1973). A model for a torsional oscillator in crystallographic least-squares refinement. Acta Cryst. B29, 2388–2392.Google Scholar
First citation Clementi, E. & Roetti, C. (1974). Roothaan–Hartree–Fock atomic wavefunctions. Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms. At. Data Nucl. Data Tables, 14, 177–478.Google Scholar
First citation Coulthard, M. A. (1967). A relativistic Hartree–Fock atomic field calculation. Proc. Phys. Soc. 91, 44–49.Google Scholar
First citation Cromer, D. T. & Mann, J. B. (1968). X-ray scattering factors computed from numerical Hartree–Fock wave functions. Los Alamos Scientific Laboratory Report LA-3816.Google Scholar
First citation Cromer, D. T. & Waber, J. T. (1968). Unpublished work reported in International tables for X-ray crystallography (1974), Vol. IV, p. 71. Birmingham: Kynoch Press.Google Scholar
First citation Dawson, B. (1970). Neutron studies of nuclear charge distributions in barium fluoride and hexamethylenetetramine. Thermal neutron diffraction, edited by B. T. M. Willis, pp. 101–123. Oxford University Press.Google Scholar
First citation Desclaux, J. P. & Freeman, A. J. (1978). Dirac–Fock studies of some electronic properties of actinide ions. J. Magn. Magn. Mater. 8, 119–129.Google Scholar
First citation Doyle, P. A. & Turner, P. S. (1968). Relativistic Hartree–Fock and electron scattering factors. Acta Cryst. A24, 390–397.Google Scholar
First citation Duijneveldt, F. B. van (1971). IBM Technical Report RJ-945.Google Scholar
First citation Dunning, T. H. Jr & Jeffrey-Hay, P. (1977). Gaussian basis sets for molecular calculations. Modern theoretical chemistry 3. Methods of electronic structure theory, edited by H. F. Schaefer III, pp. 1–27. New York: Plenum.Google Scholar
First citation Favro, L. D. (1960). Theory of the rotational motion of a free rigid body. Phys. Rev. 119, 53–62.Google Scholar
First citation Feller, W. (1966). An introduction to probability theory and its applications, Vol. II, Chap. 19. New York: John Wiley.Google Scholar
First citation Fisher, R. (1953). Dispersion on a sphere. Proc. R. Soc. London Ser. A, 217, 295–305.Google Scholar
First citation Fox, A. G., O'Keefe, M. A. & Tabbernor, M. A. (1989). Relativistic Hartree–Fock X-ray and electron atomic scattering factors at high angles. Acta Cryst. A45, 786–793.Google Scholar
First citation Freeman, A. J. & Desclaux, J. P. (1972). Neutron magnetic form factor of gadolinium. Int. J. Magn. 3, 311–317.Google Scholar
First citation Furry, W. H. (1957). Isotropic rotational Brownian motion. Phys. Rev. 107, 7–13.Google Scholar
First citation Gumbel, E. J., Greenwood, J. A. & Durand, D. (1953). The circular normal distribution: theory and tables. J. Am. Stat. Assoc. 48, 131–152.Google Scholar
First citation Huzinaga, S. (1971). Approximate atomic functions I, II, III. Technical Report, University of Alberta, Edmonton, Alberta, Canada.Google Scholar
First citation International Tables for Crystallography (2005). Vol. A, edited by Th. Hahn. Heidelberg: Springer.Google Scholar
First citation International Tables for Crystallography (2001). Vol. B, edited by U. Shmueli, 2nd ed. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Johnson, C. K. & Levy, H. A. (1974). Thermal motion of independent atoms. International tables for X-ray crystallography. Vol. IV, pp. 317–319. Birmingham: Kynoch Press.Google Scholar
First citation Kay, M. I. & Behrendt, D. R. (1963). The structure factor for a harmonic quasi-torsional oscillator. Acta Cryst. 16, 157–162.Google Scholar
First citation Kendall, M. G. & Stuart, A. (1963). The advanced theory of statistics, Vol. 1, Chaps 2, 3 and 6. London: Griffin.Google Scholar
First citation King, M. V. & Lipscomb, W. N. (1950). The X-ray scattering from a hindered rotator. Acta Cryst. 3, 155–158.Google Scholar
First citation Kuhs, W. F. (1983). Statistical description of multimodal atomic probability densities. Acta Cryst. A39, 149–158.Google Scholar
First citation Kurki-Suonio, K. (1977). Electron density mapping in molecules and crystals. IV. Symmetry and its implications. Isr. J. Chem. 16, 115–123.Google Scholar
First citation Kurki-Suonio, K., Merisalo, M. & Peltonen, H. (1979). Site symmetrized Fourier invariant treatment of anharmonic temperature factors. Phys. Scr. 19, 57–63.Google Scholar
First citation Kuznetsov, P. I., Stratonovich, R. L. & Tikhonov, V. I. (1960). Quasi-moment functions in the theory of random processes. Theory Probab. Appl. (USSR), 5, 80–97.Google Scholar
First citation Lévy, P. (1938). C. R. Soc. Math. Fr. p. 32. Also Processus stochastiques et mouvement Brownian, p. 182. Paris: Gauthier-Villars.Google Scholar
First citation Lovesey, S. W. (1984). Theory of neutron scattering from condensed matter. Vol. 2. Polarization effects and magnetic scattering. The International Series of Monographs on Physics No. 72. Oxford University Press.Google Scholar
First citation Mackenzie, J. K. & Mair, S. L. (1985). Anharmonic temperature factors: the limitations of perturbation-theory expressions. Acta Cryst. A41, 81–85.Google Scholar
First citation McLean, A. D. & Chandler, G. S. (1979). IBM Research Report RJ-2665 (34180).Google Scholar
First citation McLean, A. D. & Chandler, G. S. (1980). Contracted basis sets for molecular calculations. I. Second row atoms, Z = 11–18 . J. Chem. Phys. 72, 5639–5648.Google Scholar
First citation Mair, S. L. (1980a). Temperature dependence of the anharmonic Debye–Waller factor. J. Phys. C, 13, 2857–2868.Google Scholar
First citation Mair, S. L. (1980b). The anharmonic Debye–Waller factor in the classical limit. J. Phys. C, 13, 1419–1425.Google Scholar
First citation Mair, S. L. & Wilkins, S. W. (1976). Anharmonic Debye–Waller factor using quantum statistics. J. Phys. C, 9, 1145–1158.Google Scholar
First citation Mann, J. B. (1968a). Unpublished work reported in International tables for X-ray crystallography (1974), Vol. IV, p. 71. Birmingham: Kynoch Press.Google Scholar
First citation Mann, J. B. (1968b). Los Alamos Scientific Laboratory Report LA-3961, p. 196.Google Scholar
First citation Mardin, K. V. (1972). Statistics of directional data. New York: Academic Press.Google Scholar
First citation Maslen, E. N. (1968). An expression for the temperature factor of a librating atom. Acta Cryst. A24, 434–437.Google Scholar
First citation Mises, R. von (1918). Über die `Ganzahligheit' der Atomgewichte und verwandte Fragen. Phys. Z. 19, 490–500.Google Scholar
First citation Nathans, R., Shull, C. G., Shirane, G. & Andresen, A. (1959). The use of polarised neutrons in determining the magnetic scattering by iron and nickel. J. Phys. Chem. Solids, 10, 138–146.Google Scholar
First citation Normand, J.-M. (1980). A Lie group: rotations in quantum mechanics, p. 461. Amsterdam: North-Holland.Google Scholar
First citation Pawley, G. S. & Willis, B. T. M. (1970). Neutron diffraction study of the atomic and molecular motion in hexamethylenetetramine. Acta Cryst. A26, 263–271.Google Scholar
First citation Perrin, F. (1928). Etude mathématique du mouvement Brownien de rotation. Ann. Ecole. Norm. Suppl. 45, pp. 1–23.Google Scholar
First citation Perrin, F. (1934). Mouvement Brownien d'un ellipsoïde (I). Dispersion diélectrique pour des molécules ellipsoïdales. J. Phys. Radium, 5, 497.Google Scholar
First citation Press, W. & Hüller, A. (1973). Analysis of orientationally disordered structures. I. Method. Acta Cryst. A29, 252–256.Google Scholar
First citation Ramaseshan, S., Ramesh, T. G. & Ranganath, G. S. (1975). A unified approach to the theory of anomalous scattering. Some novel applications of the multiple-wavelength method. Anomalous scattering, edited by S. Ramaseshan & S. C. Abrahams, pp. 139–161. Copenhagen: Munksgaard.Google Scholar
First citation Roberts, P.-H. & Ursell, H. D. (1960). Random walk on a sphere. Philos. Trans. R. Soc. London Ser. A, 252, 317–356.Google Scholar
First citation Roos, B. & Siegbahn, P. (1970). Gaussian basis sets for the first and second row atoms. Theor. Chim. Acta, 17, 209–215.Google Scholar
First citation Scheringer, C. (1985). A general expression for the anharmonic temperature factor in the isolated-atom-potential approach. Acta Cryst. A41, 73–79.Google Scholar
First citation Schoenborn, B. P. (1975). Phasing of neutron protein data by anomalous dispersion. Anomalous scattering, edited by S. Ramaseshan & S. C. Abrahams, pp. 407–421. Copenhagen: Munksgaard.Google Scholar
First citation Shirane, G. (1959). A note on the magnetic intensities of powder neutron diffraction. Acta Cryst. 12, 282–285.Google Scholar
First citation Shull, C. G. (1967). Neutron interactions with atoms. Trans Am. Crystallogr. Assoc. 3, 1–16.Google Scholar
First citation Stephens, M. A. (1963). Random walk on a circle. Biometrika, 50, 385–390.Google Scholar
First citation Stewart, R. F. (1980a). Algorithms for Fourier transforms of analytical density functions. Electron and magnetisation densities in molecules and crystals, edited by P. Becker, pp. 439–442. New York: Plenum.Google Scholar
First citation Stewart, R. F. (1980b). Multipolar expansions of one-electron densities. Electron and magnetisation densities in molecules and crystals, edited by P. Becker, pp. 405–425. New York: Plenum.Google Scholar
First citation Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). Coherent X-ray scattering for the hydrogen atom in the hydrogen molecule. J. Chem. Phys. 42, 3175–3187.Google Scholar
First citation Thakkar, A. J. & Smith, V. H. Jr (1992). High-accuracy ab initio form factors for the hydride anion and isoelectronic species. Acta Cryst. A48, 70–71.Google Scholar
First citation Trammell, G. T. (1953). Magnetic scattering of neutrons from rare earth ions. Phys. Rev. 92, 1387–1393.Google Scholar
First citation Veillard, A. (1968). Gaussian basis sets for molecular wavefunctions containing second row atoms. Theor. Chim. Acta, 12, 405–411.Google Scholar
First citation Zucker, U. H. & Schulz, H. (1982). Statistical approaches for the treatment of anharmonic motion in crystals. I. A comparison of the most frequently used formalisms of anharmonic thermal vibrations. Acta Cryst. A38, 563–568.Google Scholar