6.1. INTENSITY OF DIFFRACTED INTENSITIES

Table 6.1.1.8. Cubic harmonics $K_{li}(\theta, \varphi)$ for cubic site symmetries

			Site symmetry				
N_{i^2j}	23	<i>m</i> 3	432	$\bar{4}3m$	m3m		
4π	×	×	×	×	×		
$\frac{240\pi}{7}$	×			×			
16π	×	×	×	×	×		
32π	×	×	×	×	×		
$512\pi 105$	×	×					
256π 567	×			×			
256π	×	×	×	×	×		
	×			×			
$2048\pi \cdot 243 \cdot 5005$	×		×				
512π 3	×	×	×	×	×		
$\frac{2048\pi}{21} \cdot \frac{4455}{247}$	×	×					
	$ 4\pi $ $ \frac{240\pi}{7} $ $ \frac{16\pi}{21} $ $ \frac{32\pi}{13} $ $ \frac{512\pi}{13} \cdot \frac{105}{11} $ $ \frac{256\pi}{15} \cdot \frac{567}{13} $ $ \frac{256\pi}{17 \cdot 33} $ $ \frac{256\pi}{17 \cdot 33} $ $ \frac{512\pi}{19} \cdot 165 $ $ \frac{2048\pi}{19} \cdot \frac{243 \cdot 5005}{17} $ $ \frac{512\pi}{21} \cdot \frac{3}{65} $ $ \frac{2048\pi}{4455} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

The mean-square displacement of the atom from its mean position in the direction of the vector \mathbf{v} is given by

$$\langle \mathbf{u}^2 \rangle_{\mathbf{v}} = \mathbf{v}^T \mathbf{g}^T \mathbf{\sigma}_{\mathbf{u}} \mathbf{g} \mathbf{v} / (\mathbf{v}^T \mathbf{g} \mathbf{v}),$$
 (6.1.1.32)

where g_{ij} is the covariant metric tensor with the scalar products of the unit-cell vectors $\mathbf{a}_i \cdot \mathbf{a}_i$ as components.

The thermal motion for atoms in crystals is often displayed as surfaces of constant probability density. The surface for the thermal displacement **u** is defined by

$$\mathbf{u}^T \mathbf{\sigma}_{\mathbf{u}}^{-1} \mathbf{u} = C^2. \tag{6.1.1.33}$$

The square of the distance from the origin to the equiprobability surface in the direction \mathbf{v} is

$$C^2 \mathbf{v}^T \mathbf{g} \mathbf{v} / (\mathbf{v}^T \mathbf{\sigma}_{\mathbf{u}}^{-1} \mathbf{v}).$$
 (6.1.1.34)

This is equal to (6.1.1.32) for C unity only if v coincides with a principal axis of the vibration ellipsoid.

The probability that a displacement falls within the ellipsoid defined by C is

$$(2/\pi)^{1/2} \int_{0}^{C} q^2 \exp(-q^2/2) \,\mathrm{d}q. \tag{6.1.1.35}$$

6.1.1.6. The generalized temperature factor

The Gaussian model of the probability density function (p.d.f.) $\rho_o(\mathbf{u})$ for atomic thermal motion defined in (6.1.1.30) is adequate in many cases. Where anharmonicity or curvilinear motion is important, however, more elaborate models are

In the classical (high-temperature) regime, the generalized temperature factor is given by the Fourier transform of the oneparticle p.d.f:

$$\rho(\mathbf{u}) = N^{-1} \exp[-V(\mathbf{u})/kT], \tag{6.1.1.36}$$

where

where

The harmonic temperature factor is
$$T_o(\mathbf{S}) = \exp\left[-1/2\sum_i (b_i S_i)^2\right],$$

 $N_0 = \frac{B_1 B_2 B_3}{8\pi^3}$.

where b_i and B_i are related by the reciprocity condition

 $b_i B_i = 1$. (6.1.1.42)

$$N = \int \exp[-V(\mathbf{u})/kT] \, d\mathbf{u}. \tag{6.1.1.37}$$

In the cases where the potential function $V(\mathbf{u})$ is a close approximation to the Gaussian (harmonic) potential, series expansions based on a perturbation treatment of the anharmonic terms provide a satisfactory representation of the temperature factors. That is, if the deviations from the Gaussian shape are small, approximations obtained by adding higher-order corrections to the Gaussian model are satisfactory.

In an arbitrary coordinate system, the number of significant high-order tensor coefficients for the correction is large. It may be helpful to choose coordinates parallel to the principal axes for the harmonic approximation so that

$$V(\mathbf{u})/kT = 1/2 \sum_{i=1}^{3} (B_i u_i)^2,$$
 (6.1.1.38)

in which case (6.1.1.36) may be written as

$$\rho_o(\mathbf{u}) = \frac{1}{N_0} \exp\left[-1/2\sum_i (B_i u_i)^2\right],$$
 (6.1.1.39)

$$b \cdot B \cdot = 1$$
 (6.1.1.4)

(6.1.1.40)

(6.1.1.41)