International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 6.3, pp. 600-604

Section 6.3.3.2. Cylinders and spheres

E. N. Maslena

a Crystallography Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia

6.3.3.2. Cylinders and spheres

| top | pdf |

For diffraction in the equatorial plane of a cylinder of radius R within the X-ray beam, the expression for the transmission coefficient reduces to [\eqalignno{ A={1\over A^*} &= {1\over \pi R^2}\; \int\limits^R_0\!\int\limits^{2\pi}_0\;\exp \Big(-\mu\{[R^2-r^2\sin^2(\theta+\varphi)]^{1/2} \cr &\quad +[R^2- r^2\sin^2(\theta-\varphi)]^{1/2}\}\Big) \cr &\quad\times\cosh\,(2\mu r\sin\theta\sin\varphi)r\,{\rm d} r\,{\rm d}\varphi. & (6.3.3.4)}]Values of the absorption correction A* obtained by numerical integration by Dwiggins (1975a[link]) are listed in Table 6.3.3.2[link].

Table 6.3.3.2| top | pdf |
Values of A* for cylinders

μRθ = 0°θ = 5°θ = 10°θ = 15°θ = 20°θ = 25°θ = 30°θ = 35°θ = 40°θ = 45°θ = 50°θ = 55°θ = 60°θ = 65°θ = 70°θ = 75°θ = 80°θ = 85°θ = 90°
0.01111111111111111111
0.11.18431.18431.18421.18401.18381.18351.18321.18281.18231.18181.18131.18081.18021.17981.17931.17901.17871.17851.1785
0.21.40091.40071.40021.39951.39841.39701.39531.39341.39121.38891.38651.38411.38181.37961.37771.37611.37491.37411.3739
0.31.65481.65441.65311.65101.64811.64431.63981.63471.62901.62301.61691.61081.60491.59941.59461.59061.58761.58571.5851
0.41.95221.95131.94851.94391.93761.92961.92011.90941.89791.88571.87331.86111.84951.83881.82931.82151.81571.81211.8108
0.52.29962.29792.29262.28402.27212.25722.23982.22042.19962.17812.15642.13522.11522.09692.08092.06772.05792.05182.0497
0.62.70472.70172.69262.67752.65702.63172.60232.57012.53592.50102.46622.43272.40122.37282.34802.32772.31262.30332.3001
0.73.17623.17123.15613.13153.09823.05753.01112.96072.90812.85492.80282.75302.70682.66532.62952.60032.57862.56512.5606
0.83.72363.71573.69193.65323.60153.53923.46913.39413.31693.24003.16563.09533.03072.97322.92392.88392.85422.83592.8297
0.94.35784.34564.30934.25074.17334.08123.97923.87183.76293.65603.55383.45843.37173.29513.22993.17723.13833.11423.1061
1.05.09075.07245.01854.93234.81964.68774.54394.39484.24614.10223.96643.84133.72863.62983.54623.47903.42953.39903.3886
1.15.93565.90895.83055.70655.54665.36245.16494.96364.76604.57764.40224.24244.09983.97593.87173.78823.72693.68913.6763
1.26.9076.8696.7576.5826.3606.1095.84365.57825.32195.08114.85984.66044.48424.33224.20514.10384.02953.98383.9682
1.38.0217.9677.8107.5687.2666.9296.5816.2385.91255.61105.33765.09384.88054.69764.54564.42484.33654.28214.2636
1.49.2949.2199.0038.6748.2687.8267.3766.9426.5366.1665.83415.54135.28735.07114.89224.75064.64714.58354.5619
1.510.74610.64310.3499.9079.3728.8008.2307.6897.1926.7446.3486.0025.70365.45165.24415.08044.96094.88754.8625
1.612.39712.25711.86211.27610.5819.8529.1418.4777.8777.3446.8776.4736.1285.83855.60075.41365.27735.19355.1650
1.714.26714.08013.55512.78811.89710.98210.1069.3048.5897.9637.4206.9556.5616.2315.9615.74995.59605.50145.4691
1.816.37916.13115.44114.45013.32312.18911.12510.1689.3278.6007.9767.4467.0006.6286.3266.0895.91665.81075.7746
1.918.7618.4317.5316.26714.85813.47012.19411.06610.0899.2538.5447.9467.4447.0306.6936.4306.2396.1216.081
2.021.4321.0019.8418.2416.5014.82413.31111.99510.8719.9219.1228.4527.8957.4357.0636.7736.5626.4336.389
2.124.4123.8722.3920.3818.2516.24714.47212.95311.67310.6029.7098.9658.3497.8437.4367.1186.8876.7456.697
2.227.7427.0425.1722.6920.1117.7415.67513.93812.49311.29510.3049.4848.8088.2557.8107.4647.2137.0597.006
2.331.4430.5528.2025.1622.0719.2916.9214.94713.32811.99910.90610.0089.2718.6698.1877.8127.5407.3727.315
2.435.5434.4131.4927.7924.1320.9018.1915.97814.17712.71111.51510.5379.7369.0868.5658.1617.8687.6877.625
2.540.0638.6535.0530.5926.2822.5619.5017.0315.04013.43312.13011.06910.2059.5058.9458.5118.1968.0027.935

The reduced expression for a spherical crystal of radius R is [\eqalignno{ A&={3\over 4\pi R^3}\;\int\limits^R_0\!\int\limits^1_{-1}\!\int\limits^{2\pi}_0\;\exp\Big(-\mu\{[R^2-r^2\cos^2\alpha \cr &\quad -r^2\sin^2\alpha\sin^2(\theta+\varphi)]^{1/2} \cr &\quad +[R^2-r^2\cos^2\alpha-r^2\sin^2\alpha\sin^2(\theta-\varphi)]^{1/2} \cr &\quad -2r\sin\theta\sin\alpha\sin \varphi\}\Big)r^2\,{\rm d} r\,{\rm d}(\cos\alpha)\,{\rm d}\varphi. & (6.3.3.5)}]Values of A* obtained using numerical integration by Dwiggins (1975b[link]) are listed in Table 6.3.3.3[link]. An estimate of the accuracy of the numerical integration is given by comparison with the results for special values of θ at which equations (6.3.3.4)[link] and (6.3.3.5)[link] may be integrated analytically, which are included in Table 6.3.3.1[link]. The comparison indicates a reliability for the tabulated values of better than 0.1%. Tables at finer intervals for cylinders and spheres for [\mu R\lt1.0] are given by Rouse, Cooper, York & Chakera (1970[link]). A tabulation up to [\mu R\lt5.0] for spheres is given by Weber (1969[link]). Interpolation for μR may be effected by the formula [A^*(\mu R) = \exp \left\{\textstyle\sum\limits^M_{m=1}\; K_m(\mu R)^m\right\}, \eqno (6.3.3.6)]where the Km are determined, for fixed θ, from the values in Tables 6.3.3.2[link] and 6.3.3.3[link].

Table 6.3.3.3| top | pdf |
Values of A* for spheres

μRθ = 0°θ = 5°θ = 10°θ = 15°θ = 20°θ = 25°θ = 30°θ = 35°θ = 40°θ = 45°θ = 50°θ = 55°θ = 60°θ = 65°θ = 70°θ = 75°θ = 80°θ = 85°θ = 90°
0.01111111111111111111
0.11.16091.16091.16091.16071.16061.16031.16001.15971.15931.15891.15861.15821.15791.15751.15721.15701.15681.15671.1567
0.21.34571.34561.34521.34471.34391.34281.34151.34001.33831.33661.33481.33311.33131.32971.32821.32711.32621.32561.3254
0.31.55741.55711.55611.55461.55251.54971.54631.54261.53831.53391.52931.52481.52041.51621.51261.50961.50741.50591.5055
0.41.79941.79881.79681.79351.78911.78331.77651.76891.76041.75151.74251.73351.72491.71691.70991.70411.69971.69701.6961
0.52.07552.07432.07062.06472.05652.04622.03402.02042.00561.99011.97451.95921.94451.93111.91941.90971.90241.89791.8964
0.62.38972.38772.38162.37152.35782.34062.32062.29842.27462.25002.22552.20152.17892.15832.14032.12572.11452.10762.1063
0.72.74672.74342.73362.71772.69592.66912.63822.60422.56832.53162.49522.46022.42742.39772.37192.35082.33512.32532.3220
0.83.15113.14613.13123.10693.07403.03392.98822.93862.88692.83472.78352.73462.68922.64842.61332.58452.56322.54992.5454
0.93.60823.60093.57893.54313.49523.43743.37233.30263.23083.15923.08983.02412.96372.90982.86342.82582.79792.78052.7747
1.04.12374.11314.08154.03043.96253.88163.79173.69663.60013.50483.41353.32803.24993.18073.12163.07383.03833.01633.0090
1.14.70354.68864.64424.57294.47904.36864.24744.12113.99453.87103.75403.64553.54703.46053.38703.32763.28383.25663.2474
1.25.35425.33355.27225.17475.04764.90014.74044.57614.41374.25714.11043.97563.85423.74833.65863.58663.53343.50053.4894
1.36.0826.0545.97105.83995.67105.47765.27115.06174.85734.66254.48194.31754.17064.04323.93603.85003.78683.74773.7344
1.46.8956.8576.7466.5736.3526.1025.84005.57745.32445.08624.86764.67034.49554.34474.21834.11744.04323.99743.9819
1.57.8017.7507.6047.3777.0926.7756.4476.1235.81435.52735.26665.03334.82814.65204.50524.38834.30244.24954.2315
1.68.8068.7408.5498.2567.8947.4977.0926.6976.3265.98495.67805.40575.16784.96474.79614.66224.56414.50364.4830
1.79.9209.8349.5879.2148.7598.2687.7747.2996.8596.4586.1015.78675.51405.28235.09074.93904.82794.75954.7361
1.811.15111.04010.72510.2549.6899.0888.4927.9287.4116.9466.5356.1765.86625.60455.38885.21845.09365.01704.9908
1.912.50712.36611.96711.38010.6859.9579.2468.5837.9827.4476.9786.5726.2245.93085.69005.50015.36135.27605.2468
2.013.99813.81913.32012.59311.74610.87310.0349.2628.5707.9617.4316.9756.5876.2615.99425.78425.63075.53655.5041
2.115.63215.40814.78813.89512.87411.83710.8559.9649.1758.4867.8937.3856.9556.5956.3016.0705.90175.79825.7627
2.217.41917.14116.37615.29014.06712.84711.70810.6889.7959.0238.3627.8007.3276.9326.6106.3586.1746.0616.022
2.319.36919.02518.08916.77815.32713.90212.59211.43310.4299.5698.8398.2207.7027.2726.9226.6486.4486.3256.282
2.421.48921.06919.93118.36116.65215.00013.50412.19811.07710.1259.3228.6458.0817.6147.2356.9386.7226.5896.543
2.523.79123.28021.90720.04018.04116.14214.44512.98211.73810.6909.8109.0748.4627.9577.5487.2296.9966.8536.803

Subsequent interpolation as a function of θ may be effected by the interpolation formula [A^*\{\theta\}=\textstyle\sum\limits^N_{n=1}\,L_n\sin^{2n}(\theta). \eqno (6.3.3.7)]Interpolation is accurate to 0.1% with N = M = 3.

For cylinders and spheres, [\bar T] may be obtained by means of the expression [\bar T={1\over A^*}\;{{\rm d} A^*\over {\rm d}\mu} = R\left[{1\over A^*}\;{{\rm d} A^*\over{\rm d}(\mu R)}\right] \eqno (6.3.3.8)]using the values listed in Tables 6.3.3.2[link] and 6.3.3.3[link].

Values of (1/A*)[dA*/d(μR)] obtained by numerical integration by Flack & Vincent (1978[link]) for spheres with [\mu R\lt2.5] are listed in Table 6.3.3.4[link]. An equivalent table of μ(R/A*)/[dA*/d(μR)] for [\mu R\lt4.0] is given by Rigoult & Guidi-Morosini (1980[link]).

Table 6.3.3.4| top | pdf |
Values of (1/A*)(dA*/dμR) for spheres

μRθ = 0°θ = 5°θ = 10°θ = 15°θ = 20°θ = 25°θ = 30°θ = 35°θ = 40°θ = 45°θ = 50°θ = 55°θ = 60°θ = 65°θ = 70°θ = 75°θ = 80°θ = 85°θ = 90°
0.01.50001.50001.50001.50001.50001.50001.50001.50001.50001.50001.50001.50001.50001.50001.50001.50001.50001.50001.5000
0.11.48451.48421.48291.48091.47821.47391.46901.46341.45691.45041.44391.43751.43091.42481.41911.41521.41171.40961.4089
0.21.46921.46821.46501.46111.45481.44721.43741.42681.41451.40191.38791.37481.36151.34911.33851.32921.32281.31801.3168
0.31.45271.45151.44761.44001.43091.41861.40441.38861.37081.35171.33271.31281.29471.27731.26241.24941.23971.23401.2321
0.41.43601.43411.42831.41901.40581.38981.37091.34921.32651.30181.27731.25311.22961.20891.19031.17481.16281.15601.1533
0.51.41861.41611.40901.39691.38031.35981.33601.30931.28121.25221.22311.19461.16781.14341.12181.10441.09101.08251.0797
0.61.40111.39801.38901.37421.35381.32891.30061.26931.23651.20331.17001.13821.10871.08161.05771.03831.02391.01471.0115
0.71.38301.37921.36831.35071.32641.29731.26431.22861.19181.15491.11841.08391.05161.02500.99780.97670.96150.95180.9484
0.81.36411.36001.34731.32621.29841.26501.22751.18791.14731.10711.06841.03140.99760.96740.94090.91950.90340.89310.8898
0.91.34511.34011.32531.30131.26961.23211.19081.14741.10381.06081.01980.98150.94650.91520.88800.86630.84950.83910.8359
1.01.32551.31981.30291.27581.24011.19871.15351.10701.06081.01570.97330.93400.89780.86610.83920.81670.80010.78970.7859
1.11.30581.29931.28001.24971.21031.16511.11651.06701.01850.97200.92860.88860.85220.82050.79310.77090.75420.74370.7400
1.21.28511.27801.25661.22281.17991.13121.07961.02780.97770.92990.88580.84550.80930.77760.75060.72850.71200.70170.6981
1.31.26451.25631.23241.19611.14941.09671.04300.98920.93770.88950.84510.80480.76910.73780.71130.68950.67330.66310.6596
1.41.24491.23491.20901.16841.11801.06281.00680.95170.89900.85040.80640.76660.73150.70090.67490.65390.63770.62780.6243
1.51.22311.21331.18451.13981.08671.02950.97110.91450.86150.81330.76960.73080.69640.66650.64140.62090.60550.59570.5922
1.61.20151.19081.15851.11181.05550.99570.93580.87820.82610.77780.73500.69700.66380.63490.61050.59070.57580.56630.5628
1.71.18061.16811.13391.08361.02440.96210.90050.84350.79120.74440.70270.66590.63340.60570.58220.56320.54840.53940.5361
1.81.15861.14561.10871.05580.99390.92940.86690.81010.75790.71210.67110.63590.60530.57870.55610.53760.52360.51480.5117
1.91.13701.12261.08351.02750.96250.89640.83410.77740.72620.68170.64200.60780.57910.55350.53210.51440.50100.49240.4892
2.01.11521.09961.05840.99820.93180.86460.80190.74570.69620.65270.61600.58300.55500.53050.50980.49270.47990.47170.4687
2.11.09321.07721.03270.97030.90140.83400.77120.71570.66780.62590.58990.55880.53220.50880.48860.47260.46030.45230.4494
2.21.07191.05431.00740.94270.87190.80390.74210.68740.64020.60030.56580.53530.50980.48840.46990.45480.44260.43470.4311
2.31.04981.03160.98220.91500.84340.77440.71330.66050.61470.57580.54330.51410.48960.46920.45180.43630.42520.41750.4149
2.41.02751.01180.95830.88890.81470.74820.68700.63400.59180.55070.52120.49370.46990.45000.43280.41870.40760.40030.3986
2.51.01080.96910.92970.85620.79040.70740.65540.61940.56180.52890.49800.47760.45540.43150.41420.40280.39210.38830.3783

Alternatively, one can differentiate the interpolation formula (6.3.3.6)[link], yielding [\bar T(\mu R,\theta)={1\over\mu}\sum^M_{m=1}\;mK_m(\mu R)^m. \eqno (6.3.3.9)]In this case, however, the maximum index M = 7 is required to obtain convergence for [\mu R\le2.5]. Numerical values of the coefficients Km for cylinders and spheres evaluated by Tibballs (1982[link]) are listed in Table 6.3.3.5[link].

Table 6.3.3.5| top | pdf |
Coefficients for interpolation of A* and [\bar T]

[\theta_j]15°30°45°60°75°90°Units
K1 (sphere)3/23/23/23/23/23/23/2 
K2−7.5234−9.4320−15.109−24.3812−35.219−44.042−47.74510−2
K3−7.0935−10.737−18.027−11.08814.26540.02161.08410−3
K4−2.3096−2.1332−1.46937.420524.83244.30837.39410−3
K51.83231.17114.67843.0970−10.284−27.987−25.87910−3
K6−5.1259−1.2652−14.491−16.74021.91077.00771.45810−4
K76.02650.793216.48921.774−22.391−85.570−78.81210−5
K1 (cylinder)16/3π16/3π16/3π16/3π16/3π16/3π16/3π 
K2−5.7832−8.1900−15.651−27.048−40.317−51.497−55.83710−2
K3−14.737−19.551−22.883−27.345−8.80726.63741.42010−3
K45.23991.2934−12.3016.84440.68961.37168.96310−3
K5−4.0958−2.83499.62497.503−11.295−29.397−36.55610−3
K613.17812.731−19.881−30.2119.446860.35680.96510−4
K7−14.500−14.84614.41434.2223.1492−49.206−70.57310−5
(C−1)0,j3000000All values multiplied by 3 to eliminate fractions
(C−1)1,j−7348 + 24[\sqrt{3}]−2412−848 − 24[\sqrt{3}]−3
(C−1)2,j518−496 − 200[\sqrt {3}]488−268184−496 + 200[\sqrt{3}]70
(C−1)3,j−16001920 + 560[\sqrt{3}]−21921536−11361920 − 560[\sqrt{3}]−448
(C−1)4,j2432−3520 − 640[\sqrt{3}]4032−33282752−3520 + 640[\sqrt{3}]1152
(C−1)5,j−17923072 + 256[\sqrt{3}]−33283072−28163072 − 256[\sqrt{3}]−1280
(C−1)6,j512−10241024−10241024−1024512

Interpolation between the tabulated θ values is obtained from the θ interpolation formula, noting that [L_m=\textstyle\sum\limits^7_{j=1}\;(C^{-1})_{mj}\,A^*_j, \eqno (6.3.3.10)]where [C_{mj} = \sin^{2m}\theta_j. \eqno (6.3.3.11)]The elements [(C^{-1})_{mj}] and the [K_m(\theta_j)] for [\theta_j] at 15° intervals in the range [0\lt\theta_j\lt90^\circ] are listed in Table 6.3.3.5[link]. Differentiating (6.3.3.7)[link] yields [A^*(\mu R, \theta)\bar T(\mu R, \theta)=\textstyle\sum\limits^M_{m=0}\;P_m\sin^{2m}\theta, \eqno (6.3.3.12)]where [P_m=R{\partial L_m \over \partial(\mu R)} = \sum^7_{j=1} (C^{-1})_{mj}\,A^*_j\bar T_j. \eqno (6.3.3.13)]Equation (6.3.3.12)[link] for path lengths is the analogue of equation (6.3.3.7)[link] for the transmission factors. It provides the basis for an interpolation formula.

In the case of a cylindrical crystal much larger than the X-ray beam, the absorption correction has been determined by Coyle (1972[link]), in an extension of earlier work by Coyle & Schroeder (1971[link]). The absorption correction for the case of the cylinder axis coincident with the [\varphi] axis of a Eulerian cradle, shown in Fig. 6.3.3.1[link] , reduces to the line integral [{1\over2\tau}\;\int\limits^{2\tau}_0\;\exp\{-\mu[(z)+T(z)]\}\,{\rm d} z, \eqno (6.3.3.14)]where z and T(z) are the path lengths for the incident and diffracted beams, respectively. τ is the radius, along the line of the incident beam, of the ellipse described by the cross section of the crystal in the plane of diffraction, shown in Fig. 6.3.3.2[link] . The equation for the ellipse is [\tau=R(1-\sin^2\theta\sin^2\chi)^{-1/2}. \eqno (6.3.3.15)]The outgoing elliptical radius v satisfies [Av^4+Bv^2+C=0, \eqno (6.3.3.16)]where [\eqalign{ A&=[1-\sin^2\theta\sin^2\chi]^2 \cr B &=-2R^2[1-\sin^2\theta\sin^2 \chi] \cr&\quad -2(\tau-z){^2}[\cos\!{^2}\,\theta-\sin\!{^2}\, \theta\cos\!{^2}\,\chi]\sin\!{^2}\,2\theta\sin{^2}\chi \cr C &=R^4+2R^2(\tau-z)^2\sin^22\theta\sin^2\chi\cos2\theta \cr &\quad+(\tau-z)^4\sin^42\theta\sin^4\chi.}]

[Figure 6.3.3.1]

Figure 6.3.3.1| top | pdf |

Geometry of the Eulerian cradle with the axis of a cylindrical specimen coincident with the φ axis.

[Figure 6.3.3.2]

Figure 6.3.3.2| top | pdf |

Cross section of the plane of diffraction for a cylindrical specimen coincident with the φ axis.

In the case where the cylinder axis is inclined at an angle Γ to the [\varphi] axis, these equations become [\eqalign{ A &=[1-\sin^2(\theta+\beta)\sin^2\chi_1]^2 \cr B &=-2R^2[1-\sin^2 (\theta+\beta)\sin^2\chi_1] \cr &\quad -2(\tau-z)^2[\cos^2(\theta+\beta) \cr &\quad -\sin^2(\theta+\beta)\cos^2\chi_1]\sin^22\theta\sin^2\chi_1 \cr C &=R^4+2R^2(\tau-z)^2\sin^22\theta\sin^2\chi_1\cos2(\theta+\beta) \cr &\quad +(\tau-z)^4\sin^42\theta\sin^4\chi_1,}]where [\tan\beta=\sin\Gamma\sin\varphi/ [\sin\Gamma\cos\chi\cos\varphi+\sin\chi\cos\Gamma].]The roots of the quadratic equation (6.3.3.16)[link] for [v^2] are real and positive for reflection from within the crystal. The convergent path length T is given by the positive root of the triangle formula [T^2-2T(\tau-z)\cos2\theta+(\tau-z)^2-v^2=0. \eqno (6.3.3.17)]

It should be noted that the volume of the specimen irradiated changes with the angular settings of the diffractometer. Normalization to constant volume requires that the absorption correction be multiplied by the volume-correction factor [[1-\sin^2(\theta-\beta)\sin^2\chi_1]^{-1/2}].

The method readily extends to the case of a cylindrical window or sheath, such as used for mounting an unstable crystal of conventional size. The correction in this case is [\eqalignno{ &\exp[-\mu(\tau_2-\tau_1+v_2-v_1)] \cr &\quad=\exp\Big(-\mu(R_2-R_1)\{[1-\sin^2(\theta-\beta)\sin^2\chi_1]^{-1/2} \cr &\qquad+[1-\sin^2(\theta+\beta)\sin^2\chi_1]^{-1/2}\}\Big), & (6.3.3.18)}]where the subscripts 1 and 2 apply to the inner and outer radii, respectively.

The integral in equation (6.3.3.14)[link] may be evaluated by Gaussian quadrature, i.e. by approximation as a weighted sum of the values of the function at the N zeros [X_i] of the Legendre polynomial of degree N in the interval [−1, +1]. The weights [w_i] for the points are tabulated by Abramowitz & Stegun (1964[link]). Further details are given in Subsection 6.3.3.4[link]. The emergent path lengths [T(z_1)] and [T(z_2)] for the case of the sheath are calculated as functions of the Gaussian variable [X_i] using the linear transformation [z_i=\tau_1X_i+\tau_2, \quad i=1,2,\ldots, N. \eqno (6.3.3.19)]This transformation converts the Gaussian variable X into the beam coordinate z for each i of the N summation points.

References

First citation Abramowitz, M. & Stegun, I. A. (1964). Handbook of mathematical functions, p. 916. National Bureau of Standards Publication AMS 55.Google Scholar
First citation Coyle, B. A. (1972). Absorption and volume corrections for a cylindrical specimen, larger than the beam, and in general orientation. Acta Cryst. A28, 231–233.Google Scholar
First citation Coyle, B. A. & Schroeder, L. W. (1971). Absorption and volume corrections for a cylindrical sample, larger than the X-ray beam, employed in Eulerian geometry. Acta Cryst. A27, 291–295.Google Scholar
First citation Dwiggins, C. W. Jr (1975a). Rapid calculation of X-ray absorption correction factors for cylinders to an accuracy of 0.1%. Acta Cryst. A31, 146–148.Google Scholar
First citation Dwiggins, C. W. Jr (1975b). Rapid calculation of X-ray absorption correction factors for spheres to an accuracy of 0.05%. Acta Cryst. A31, 395–396.Google Scholar
First citation Flack, H. D. & Vincent, M. G. (1978). Absorption weighted mean path lengths for spheres. Acta Cryst. A34, 489–491.Google Scholar
First citation Rigoult, J. & Guidi-Morosini, C. (1980). An accurate calculation of [\bar T]μ for spherical crystals. Acta Cryst. A36, 149–151.Google Scholar
First citation Rouse, K. D., Cooper, M. J., York, E. J. & Chakera, A. (1970). Absorption corrections for neutron diffraction. Acta Cryst. A26, 682–691.Google Scholar
First citation Tibballs, J. E. (1982). The rapid computation of mean path lengths for cylinders and spheres. Acta Cryst. A38, 161–163.Google Scholar
First citation Weber, K. (1969). Eine neue Absorptionsfactortafel für kugelförmige Proben. Acta Cryst. B25, 1174–1178.Google Scholar








































to end of page
to top of page