International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 7.2, p. 641

Section 7.2.3.3. Detector systems based on an electron-tube device

J. N. Chapmana

a Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland

7.2.3.3. Detector systems based on an electron-tube device

| top | pdf |

Detector and recording systems based on electron-tube devices have been reviewed in detail by Herrmann & Krahl (1984[link]). The first stage is a transmission fluorescent screen (as described in Subsection 7.2.3.1[link]), which converts the electron image to its photon counterpart. A fibre-optic plate may then be used to transfer the photon image to a low-light-level TV camera located outside the vacuum system. In some instances, an image intensifier is included before the TV camera to increase the intensity of the light signal being recorded. An alternative means of increasing the light signal, preferable when the energy of the incident electrons is low, is to employ a channel plate before the fluorescent screen.

Electronic systems are capable of detecting single electrons and, provided the electron current density incident on the fluorescent screen is sufficiently low, can have a DQE of ~0.9. The restriction to low current densities arises from the need to ensure that in a single TV frame the number of electrons arriving at any pixel is either 0 or 1. Under these conditions, truly digital images may be obtained in which the number associated with each pixel is the number of electrons that arrived at the corresponding small area of the fluorescent screen during the exposure. To achieve such an image in practice requires the accumulation of many individual TV frames (the precise number depending on the statistical accuracy required) and this is normally achieved using an image memory or frame store.

At higher electron current densities, the number of electrons arriving at each point on the fluorescent screen in a TV frame interval can be considerably greater than one. The TV output signal then varies continuously and it is impossible to determine the exact number of electrons associated with each pixel. When used in this way (the analogue mode), the maximum value of DQE is ∼0.8.

The number of pixels in a frame is typically ∼3 × 105, a number appreciably lower than the storage capacity of the film commonly in use. A consequence of this is that diffraction patterns may have to be recorded at a range of camera lengths if fine detail and high-scattering-angle information are both to be observed.

The electronic detector system as described, particularly if it incorporates an intensifier, has a higher sensitivity than the naked eye. This is particularly beneficial when focusing fine structures or when working with radiation-sensitive specimens where limitations are imposed on the exposure to which the specimen may be subjected. Perhaps of even greater value, however, is the fact that the system as a whole provides storage (thus removing the need to irradiate the specimen continuously during observation) and that the storage is in a digital form. As a result, it is straightforward to interface a computer to the system and on-line processing of the stored intensity values may be undertaken readily.

A major disadvantage of the system is the cost and susceptibility to damage (if subjected to excessive intensities) of high dynamic range, low-noise electron tubes, which should be used if the highest performance is to be achieved; a further drawback for many applications is the barely adequate number of pixels/frame.

References

First citation Herrmann, K.-H. & Krahl, D. (1984). Electronic image recording in conventional electron microscopy. Advances in optical and electron microscopy, edited by R. Barer & V. E. Cosslett, Chap. 1. London: Academic Press.Google Scholar








































to end of page
to top of page