International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 7.4, pp. 653-665
https://doi.org/10.1107/97809553602060000607

Chapter 7.4. Correction of systematic errors

N. G. Alexandropoulos,a M. J. Cooper,b P. Suorttic and B. T. M. Willisd

a Department of Physics, University of Ioannina, PO Box 1186, Gr-45110 Ioannina, Greece,bDepartment of Physics, University of Warwick, Coventry CV4 7AL, England,cDepartment of Physics, PO Box 9, University of Helsinki, FIN-00014 Helsinki, Finland, and dChemical Crystallography Laboratory, University of Oxford, 9 Parks Road, Oxford OX1 3PD, England

References

First citation Åberg, T. & Tulkki, J. (1985). Inelastic X-ray scattering including resonance phenomena. Atomic inner shell physics, edited by B. Crasemann, Chap. 10. New York: Plenum.Google Scholar
First citation Bachmann, R., Kohler, H., Schulz, H. & Weber, H. (1985). Structure investigation of a CaF2-crystal with synchrotron radiation. Acta Cryst. A41, 35–40.Google Scholar
First citation Bannett, Y. B. & Freund, I. (1975). Resonant X-ray Raman scattering. Phys. Rev. Lett. 34, 372–376.Google Scholar
First citation Bewilogua, L. (1931). Incoherent scattering of X-rays. Phys. Z. 32, 740–744.Google Scholar
First citation Biggs, F., Mendelsohn, L. B. & Mann, J. B. (1975). Hartree Fock Compton profiles for the elements. At. Data Nucl. Data Tables, 16, 201–309.Google Scholar
First citation Bloch, B. J. & Mendelsohn, L. B. (1974). Atomic L-shell Compton profiles and incoherent scattering factors: theory. Phys. Rev. A, 9, 129–155.Google Scholar
First citation Bloch, F. (1934). Contribution to the theory of the Compton line shift. Phys. Rev. 46, 674–687.Google Scholar
First citation Blume, M. & Gibbs, D. (1988). Polarisation dependence of magnetic X-ray scattering. Phys. Rev. B, 37, 1779–1789.Google Scholar
First citation Brown, G. S. & Lindau, I. (1986). Editors. Synchrotron radiation instrumentation. Proceedings of the International Conference on X-ray and VUV Synchrotron Radiation Instrumentation. Nucl. Instrum. Methods, A246, 511–595.Google Scholar
First citation Brown, W. D. (1966). Cross-sections for coherent/incoherent X-ray scattering. Reports D2-125136-1 and 125137-1. Boeing Co.Google Scholar
First citation Bushuev, V. A. & Kuz'min, R. N. (1977). Inelastic scattering of X-ray and synchrotron radiation in crystals, coherent effects in inelastic scattering. Sov. Phys. Usp. 20, 406–431.Google Scholar
First citation Cooper, M. J. (1971). The evaluation of thermal diffuse scattering of neutrons for a one velocity model. Acta Cryst. A27, 148–157.Google Scholar
First citation Cooper, M. J. (1985). Compton scattering and electron momentum determination. Rep. Prog. Phys. 48, 415–481.Google Scholar
First citation Cromer, D. T. (1969). Compton scattering factors for aspherical free atoms. J. Chem. Phys. 50, 4857–4859.Google Scholar
First citation Cromer, D. T. & Mann, J. B. (1967). Compton scattering factors for spherically symmetric free atoms. J. Chem. Phys. 47, 1892–1893.Google Scholar
First citation Currat, R., DeCicco, P. D. & Weiss, R. J. (1971). Impulse approximation in Compton scattering. Phys. Rev. B, 4, 4256–4261.Google Scholar
First citation Dorner, B., Burkel, E., Illini, Th. & Peisl, J. (1987). First measurement of a phonon dispersion curve by inelastic X-ray scattering. Z. Phys. B, 69, 179–183.Google Scholar
First citation Eisenberger, P. &Platzman, P. M. (1970). Compton scattering of X-rays from bound electrons. Phys. Rev. A, 2, 415–423.Google Scholar
First citation Eisenberger, P., Platzman, P. M. & Winick, M. (1976). Resonant X-ray Raman scattering studies using synchrotron radiation. Phys. Rev. B, 13, 2377–2380.Google Scholar
First citation Fermi, E. (1928). Statistical methods of investigating electrons in atoms. Z. Phys. 48, 73–79.Google Scholar
First citation Gavrila, M. & Tugulea, M. N. (1975). Compton scattering by L shell electrons. Rev. Roum. Phys. 20, 209–230.Google Scholar
First citation Helmholdt, R. B., Braam, A. W. M. & Vos, A. (1983). Improved corrections for thermal diffuse scattering. Acta Cryst. A39, 90–94.Google Scholar
First citation Helmholdt, R. B. & Vos, A. (1977). Errors in atomic parameters and electron density distributions due to thermal diffuse scattering of X-rays. Acta Cryst. A33, 38–45.Google Scholar
First citation Hubbell, J. H., Veigele, W. J., Briggs, E. A., Brown, R. T., Cromer, D. T. & Howerton, R. J. (1975). Atomic form factors, incoherent scattering functions and photon scattering cross-sections. J. Phys. Chem. Ref. Data, 4, 471–538.Google Scholar
First citation International Tables for Crystallography (2001). Vol. B. Reciprocal space, edited by U. Shmueli, 2nd ed. Dordrecht: Kluwer.Google Scholar
First citation Jahn, H. A. (1942a). Diffuse scattering of X-rays by crystals. The Faxen–Waller theory and the surfaces of isodiffusion for cubic crystals. Proc R. Soc. London Ser. A, 179, 320–340.Google Scholar
First citation Jahn, H. A. (1942b). Diffuse scattering of X-rays by crystals. II. Detailed calculation of the surfaces of isodiffusion for the (002), (112), (222) and (110) reflexions of sodium single crystals. Proc R. Soc. London Ser. A, 180, 476–483.Google Scholar
First citation James, R. W. (1962). The optical principles of the diffraction of X-rays. London: Bell.Google Scholar
First citation Jauch, J. M. & Rohrlich, F. (1976). The theory of photons and electrons. Berlin: Springer-Verlag.Google Scholar
First citation Klein, O. & Nishina, Y. (1929). Uber die Streuung von Strahlung durch freie Electronen nach der neuen relativistichers Quantendynamik von Dirac. Z. Phys. 52, 853–868.Google Scholar
First citation Krec, K. & Steiner, W. (1984). Investigation of a silicon single crystal by means of the diffraction of Mössbauer radiation. Acta Cryst. A40, 459–465.Google Scholar
First citation Krec, K., Steiner, W., Pongratz, P. & Skalicky, P. (1984). Separation of elastically and inelastically scattered γ-radiation by Mössbauer diffraction. Acta Cryst. A40, 465–468.Google Scholar
First citation Lipps, F. W. & Tolhoek, H. A. (1954a). Polarization phenomena of electrons and photons I. Physica (Utrecht), 20, 85–98.Google Scholar
First citation Lipps, F. W. & Tolhoek, H. A. (1954b). Polarization phenomena of electrons and photons II. Physica (Utrecht), 20, 395–405.Google Scholar
First citation Lovesey, S. W. (1993). Photon scattering by magnetic solids. Rep. Prog. Phys. 56, 257–326.Google Scholar
First citation Manninen, S., Paakkari, T. & Kajantie, K. (1976). Gamma ray Compton profile of aluminium. Philos. Mag. 29, 167–178.Google Scholar
First citation Mathieson, A. McL. (1985). Small-crystal X-ray diffractometry with a crystal ante-monochromator. Acta Cryst. A41, 309–316.Google Scholar
First citation Matsushita, T. & Hashizume, H. (1983). Handbook of synchrotron radiation, Vol. I, edited by E. E. Koch, pp. 261–314. Amsterdam: North-Holland.Google Scholar
First citation Matsushita, T. & Kaminaga, U. (1980a). A systematic method of estimating the performance of X-ray optical systems for synchrotron radiation. I. Description of various optical elements in position-angle space for ideally monochromatic X-rays. J. Appl. Cryst. 13, 465–471.Google Scholar
First citation Matsushita, T. & Kaminaga, U. (1980b). A systematic method of estimating the performance of X-ray optical systems for synchrotron radiation. II. Treatment in position-angle-wavelength space. J. Appl. Cryst. 13, 472–478.Google Scholar
First citation Merisalo, M. & Kurittu, J. (1978). Correction of integrated Bragg intensities for anisotropic thermal scattering. J. Appl. Cryst. 11, 179–183.Google Scholar
First citation Pattison, P. & Schneider, J. R. (1979). Test of the relativistic 1s wavefunction in Au and Pb using experimental Compton profiles. J. Phys. B, 12, 4013–4019.Google Scholar
First citation Popa, N. C. & Willis, B. T. M. (1994). Thermal diffuse scattering in time-of-flight diffractometry. Acta Cryst. A50, 57–63.Google Scholar
First citation Pratt, R. H. & Tseng, H. K. (1972). Behaviour of electron wavefunctions near the atomic nucleus and normalisation screening theory in the atomic photoeffect. Phys. Rev. A, 5, 1063–1072.Google Scholar
First citation Ribberfors, R. (1975a). Relationship of the relativistic Compton cross-section to the momentum distribution of bound electron states. Phys. Rev. B, 12, 2067–2074.Google Scholar
First citation Ribberfors, R. (1975b). Relationship of the relativistic Compton cross-section to the momentum distribution of bound electron states. II. Effects of anisotropy and polarisation. Phys. Rev. B, 12, 3136–3141.Google Scholar
First citation Ribberfors, R. (1983). X-ray incoherent scattering total cross-sections and energy absorption cross-sections by means of simple calculation routines. Phys. Rev. A, 27, 3061–3070.Google Scholar
First citation Ribberfors, R. & Berggren, K.-F. (1982). Incoherent X-ray scattering functions and cross sections by means of a pocket calculator. Phys. Rev. A, 26, 3325–3333.Google Scholar
First citation Rouse, K. D. & Cooper, M. J. (1969). The correction of measured integrated Bragg intensities for anisotropic thermal diffuse scattering. Acta Cryst. A25, 615–621.Google Scholar
First citation Sakata, M., Stevenson, A. W. & Harada, J. (1983). G-TDSCOR: one-phonon TDS corrections for measured integrated Bragg intensities. J. Appl. Cryst. 16, 154–156.Google Scholar
First citation Schaupp, D., Czerwinski, H., Smend, F., Wenskus, R., Schumacher, M., Millhouse, A. H. & Strauss, S. (1984). Resonant Raman scattering of synchrotron X-rays by neodymium: observation of fine structure in K-L-RRS and of K-N-RRS. Z. Phys. A, 319, 1–7.Google Scholar
First citation Slater, J. C. (1937). Wavefunctions in a periodic crystal. Phys. Rev. 51, 846–851.Google Scholar
First citation Sparks, C. J. (1974). Inelastic resonance emission of X-rays: anomalous scattering associated with anomalous dispersion. Phys. Rev. Lett. 33, 262–265.Google Scholar
First citation Stevens, E. D. (1974). Thermal diffuse scattering corrections for single-crystal integrated intensity measurements. Acta Cryst. A30, 184–189.Google Scholar
First citation Stevenson, A. W. & Harada, J. (1983). The consequences of the neglect of TDS correction for temperature parameters. Acta Cryst. A39, 202–207.Google Scholar
First citation Suortti, P. (1980a). Powder TDS and multiple scattering. Accuracy in powder diffraction, edited by S. Block & C. R. Hubbard, pp. 8–12. Natl Bur. Stand. (US) Spec. Publ. No. 567.Google Scholar
First citation Suortti, P. (1980b). Components of the total X-ray scattering. Accuracy in powder diffraction, edited by S. Block & C. R. Hubbard, pp. 1–20. Natl Bur. Stand. (US) Spec. Publ. No. 567.Google Scholar
First citation Suortti, P. (1985). Parallel beam geometry for single-crystal diffraction. J. Appl. Cryst. 18, 272–274.Google Scholar
First citation Suortti, P., Hastings, J. B. & Cox, D. E. (1985). Powder diffraction with synchrotron radiation. I. Absolute measurements. Acta Cryst. A41, 413–416.Google Scholar
First citation Suortti, P. & Jennings, L. D. (1977). Accuracy of structure factors from X-ray powder intensity measurements. Acta Cryst. A33, 1012–1027.Google Scholar
First citation Thomas, L. H. (1927). Calculation of atomic fields. Proc. Cambridge Philos. Soc. 33, 542–548.Google Scholar
First citation Thomlinson, W. & Williams, G. P. (1984). Editors. Synchrotron radiation instrumentation 3. Proceedings of the Third National Conference on Synchrotron Radiation Instrumentation. Nucl. Instrum. Methods, 222, 215–278.Google Scholar
First citation Veigele, W. J. (1967). Research of X-ray scattering cross sections: final report. Report KN-379-67-3(R). Kaman Sciences Corp.Google Scholar
First citation Voigt, W. (1910). Lehrbuch der Kristallphysik. Leipzig: Teubner.Google Scholar
First citation Waller, I. & Hartree, D. R. (1929). Intensity of total scattering of X-rays. Proc. R. Soc. London Ser. A, 124, 119–142.Google Scholar
First citation Williams, B. G. (1977). Compton scattering. New York: McGraw-Hill.Google Scholar
First citation Willis, B. T. M. (1970). The correction of measured neutron structure factors for thermal diffuse scattering. Acta Cryst. A26, 396–401.Google Scholar
First citation Willis, B. T. M., Carlile, C. J. & Ward, R. C. (1986). Neutron diffraction from single-crystal silicon: the dependence of the thermal diffuse scattering on the velocity of sound. Acta Cryst. A42, 188–191.Google Scholar
First citation Wooster, W. A. (1962). Diffuse X-ray reflections from crystals. Oxford: Clarendon Press.Google Scholar