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8.5. Detection and treatment of systematic error
By E. PrRINCE AND C. H. SPIEGELMAN

8.5.1. Accuracy

Chapter 8.4 discusses statistical tests for goodness of fit
between experimental observations and the predictions of a
model with adjustable parameters whose values have been
estimated by least squares or some similar procedure. In
addition to the estimates of parameter values, one can also
make estimates of the uncertainties in those values, estimates
that are usually expressed in terms of an estimated standard
deviation or, according to recommended usage (ISO, 1993), a
standard uncertainty. A standard deviation is a measure of
precision, that is, a measure of the width of a confidence
interval that results from random fluctuations in the
measurement process. What the experimenter who collected
the data wants to know about, of course, is accuracy, a
measure of the location of a region within which nature’s
‘correct’ value lies, as well as its width (Prince, 1994). In
performing a refinement, we have assumed implicitly that the
observations have been drawn at random from a population
the mean of whose p.d.f. is given by a model when all of its
parameters have those unknown, correct values. If this
assumption is incorrect, the expected value of the estimate
may no longer be near to the correct value, and the estimate
contains bias, or systematic error. An accurate measurement
is one that not only is precise but also has small bias. In this
chapter, we shall discuss various criteria by which the results
of a refinement may be judged in order to determine whether
they are free of systematic error, and thus whether they may
be considered accurate.

8.5.2. Lack of fit

We saw in Section 8.4.2 that the sum of squared residuals from
an ideally weighted, least-squares fit to a correct model is a sum
of terms that has expected value (n — p) and is distributed as x>
with v = n — p degrees of freedom. Further, the residuals have
a distribution with zero mean. A value for the sum that exceeds
(n — p) by an amount that is improbably large is an indication of
lack of fit, which may be due to an incorrect model for the
mean or to nonideal weighting or both. {The sum, S, may be
considered to be improbably large when the value of the 2
cumulative distribution function, ¥ [S, (n — p)], is close to 1.0.
A value for the sum that is substantially less than (n — p) may
also be an indication that the model contains more parameters
than can be justified by the data set. Note also that a reasonable
value for the sum of squared residuals does not prove that the
model is correct. It indicates that the model adequately
describes the data, but it in no way rules out the existence of
alternative models that describe the data equally well.} If the
sum of squares is greater than (n — p), it is commonly assumed
that the mean model is correct, and that the weights have
appropriate relative values, although their absolute values may
be too large. If w = k?/u?, where k is some number greater than
one, and u; is the standard uncertainty of the ith observation, the
goodness-of-fit parameter,

" 12
72
G= {Zwi[yi — M;(x)] /(n—P)} , (8.5.2.1)
i=1
is taken to be an estimate of k, and all elements of the inverse of
the normal-equations matrix are multiplied by k* to obtain the
estimated variance-covariance matrix

V, = G*ATwA) . (8.5.2.2)
Frequently, however, there is some other, independent estimate
of the variance of the observation, 01»2, derived, for example,
from counting statistics or from the observed scatter among
symmetry-equivalent reflections. If this estimate is inconsistent
with the hypothesis that all data points have been overweighted
by a constant factor, then the assumption that the parameter
estimates are unbiased but less precise than the original weights
would indicate must be discarded. Instead, it must be assumed
that the model is incorrect, or at least incomplete. A systematic
error may be considered to cause the model to be incomplete,
and may introduce bias into some or all of the refined
parameters. (Note that in many standard statistical texts it is
implicitly assumed, without so stating, that the data have already
been scaled by a set of correct, relative weights. It is thus easy
for the unwary reader to make the error of assuming that the
practice of multiplying by the goodness-of-fit parameter is a well
established procedure.)

The use of (8.5.2.2) to compute estimated variances and
standard uncertainties assumes implicitly that the effect of lack of
fit on parameter estimates is random, and applies equally to all
parameters, even though different types of parameter may have
very different mathematical relations in the model. With a model
as complex as the crystallographic structure-factor formula, this
assumption is certainly questionable.

Information about the nature of the model inadequacies can
be obtained by examining the residuals (Belsley, Kuh &
Welsch, 1980; Belsley, 1991). The standardized residuals,
R; = [y; — M(X)]/u}, where X is the least-squares estimate of the
parameters, should be randomly distributed, with zero mean,
not only for the data set as a whole but also for subsets of the
data that are chosen in a manner that depends only on the
model and not on the observed values of the data. Here, u; is
the standard uncertainty of the residual and is related to u;, the
standard uncertainty of the observation, by u; = u,(1 — P;),
where P, is a diagonal element of the projection matrix
(Section 8.4.4). A scatter plot, in which the residuals are
plotted against some control variable, such as |F_,|, sin8/4, or
one of the Miller indices, should reveal no general trends. The
existence of any such trend may indicate a systematic effect
that depends on the corresponding variable. The model may
then be modified by inclusion of a factor that is proportional to
that variable, and the refinement repeated. An examination of
the shifts in the other parameters, and of the new row or
column of the variance-covariance matrix, will then reveal
which of the parameters in the unmodified model are likely to
have been biased by the systematic effect. When this procedure
has been followed, it is extremely important to consider
carefully the nature of the additional effect and determine
whether it is plausible in terms of physics and chemistry.

Another procedure for detecting systematic lack of fit makes
use of the fact that, if the model is correct, and the error
distribution is approximately normal, or Gaussian, the distribu-
tion of residuals will also be approximately normal. A large
sample may be checked for normality by means of a quantile—
quantile, or Q-0Q, plot (Abrahams & Keve, 1971; Kafadar &
Spiegelman, 1986). To make such a plot, the residuals are first
sorted in ascending order of magnitude. If there are n points in
the data set, the value of the ith sorted residual should be close to
the value, x;, for which
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W(x,) = (2i — 1)/2n, (8.5.2.3)

where ¥(x) is the cumulative distribution function for the normal
p.d.f. A plot of R, against x; should be a straight line with zero
intercept and unit slope. A straight line with a slope greater than
one suggests that the model is satisfactory, but that the variances
of the data points have been systematically underestimated. Lack
of fit is suggested if the curve has a higher slope near the ends,
indicating that large residuals occur with greater frequency than
would be predicted by the normal p.d.f.

The sorted residuals tend to be strongly correlated. A positive
displacement from a smooth curve tends to be followed by
another positive displacement, and a negative one by another
negative one, which gives the O-Q plot a wavy appearance, and
it may be difficult to decide whether it is a straight line or not.
Because of this, a useful alternative to the QO-Q plot is the
conditional Q-Q plot (Kafadar & Spiegelman, 1986), so called
because the abscissa for plotting the ith sorted residual is the
mean of a conditional p.d.f. for that residual given the observed
values of all the others. To construct a conditional Q-0 plot, first
transform the distribution to a uniform p.d.f. by

U = ¥(R, . 0), (8.5.2.4)

where 1 and o are resistant estimates (Section 8.2.2) of the mean
and standard deviation of the p.d.f., such as the median and 0.75
times the interquartile range, and ¥ represents the cumulative
distribution function. Letting U, = 0 and U, ,; = 1, the expected
value of U;, given all the others, is

(U) = Uiy + Uyy)/2.
The ith abscissa for the O-Q plot is then
xi = lI/i]((l]i)ﬂ M, 0)7

(8.5.2.5)

(8.5.2.6)

where W'(y, i1, 0) is a per cent point function, or p.p.f., the
value of x for which ¥(x, u, o) = y.

0-0 plots for subsets of the data can reveal, by nonzero
intercepts, that those subsets are subject to a systematic bias.
Because of its property of removing short-range kinks in the
curve, the conditional Q-Q plot can be particularly useful in
this application. The values of p and o used for the
transformation to a uniform distribution, as in (8.5.2.4), should
be those determined from the entire data set.

A O-0 plot will reveal data points that are in poor agreement
with the model, but that do not belong to any easily identifiable
subset. Because of the central limit theorem (Section 8.4.1),
however, the least-squares method tends to force the distribution
of the residuals toward a normal distribution, and the discrepant
points may not be clearly evident. A robust/resistant procedure
(see Section 8.2.2), because it reduces the influence of strongly
discrepant data points, helps to separate them from the body of
the data. Therefore, if a data set contains discrepant points, a
0-0 plot of the residuals from a robust/resistant fit will tend to
have greater curvature at the extremes than one from a
corresponding least-squares fit. If the discrepant data points
that are thus identified have a pattern, this information may
enable a systematic error to be characterized.

8.5.3. Influential data points

Section 8.4.4 discusses the influence of individual data points on
the estimation of parameters and how to identify the data points
that should be measured with particular care in order to make
the most precise estimates of particular parameters. The same
properties that cause these influential data points to be most
effective in reducing the uncertainty of a parameter estimate

when the model is a correct predictor for the observations also
cause them to have the greatest potential for introducing bias if
there is a flaw in the model or, correspondingly, if they are
subject to systematic error. Reviews of procedures for studying
the effects of influential data points and outliers have been given
by Beckman & Cook (1983), by Chatterjee & Hadi (1986), and
by Belsley (1991).

The effects of possible systematic error can be studied by
identifying influential data points and then observing the effects
of deleting them one by one from the refinement. The deletion of
a data point should affect the standard uncertainty of an estimate,
but should not cause a shift in its mean that is more than a small
multiple of the resulting standard uncertainty. As in Section
8.4.4, we define the design matrix, A, by

A; = oM, (x)/ox;, (8.5.3.1)
where M;(x) is the model function for the ith data point, and x is
a vector of adjustable parameters. Let R be the upper triangular
Cholesky factor of the weight matrix, so that W = R'R, and
define the weighted design matrix by Z = RA and the weighted
vector of observations by y = Ry. The least-squares estimate of
X is then

x=(Z"2)y'7"y, (8.5.3.2)
and the vector of predicted values is
y =2(Z'2)'Z"y = Py, (8.5.3.3)

where P is the projection, or hat, matrix. A diagonal element,
P;, of P is a measure of the leverage, that is of the relative
influence, of the ith data point, and therefore of the sensitivity of
the estimates of the elements of x to an error in the measurement
of that data point. P; lies in the range 0 < P; < 1, and it has
average value p/n, so that data points with values of P, greater
than 2p/n can be considered particularly influential.

Let H = Z"Z be the normal-equations matrix, let V.= H ! be
the estimated variance-covariance matrix, and let q = Z”y’, so
that X = Vq. Let z; be the ith row of Z, and denote by zZ9 HY,
V@, q?, and X the respective matrices and vectors computed
with the ith data point deleted from the data set. We wish to find
large values of [x; —fj(-’)l /[V;;’)]l/ 2. so we need to compute V©
and x. With a derivation similar to that for (8.4.4.7), it can be
shown (Fedorov, 1972; Prince & Nicholson, 1985) that

. \ A% \ 28R %

VO—y 4 Ty T 8.5.3.4

+(1_ZiVZiT) +(1_Pii) ( )

Note that, if P; =1, all elements of V® become infinite,

implying that H(’) is singular. Thus, if such a data point is
deleted, the solution is no longer determinate. Now,

g0 = yigo (8.5.3.5)

and

q" =q-yz], (8.5.3.6)
so that, when V and X have been computed once, it is a
straightforward and inexpensive additional computation to
determine whether any parameter has been strongly influenced,
and therefore potentially biased, by the inclusion of any data
point in the refinement. If there is any reason to be concerned
about possible systematic error, the leverage of every data point
included in the refinement should be computed, and the effects of
deletion of all of those with leverage greater than 2p/n should be
observed.
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8.5.4. Plausibility of results

A study of residuals to detect a pattern of discrepancies will
reveal the presence of systematic error, or model inadequacy,
only if different subsets of the data are affected differently.
Some sources of bias, however, have noticeable -effects
throughout the data set, and missing parameters may mimic
others that have been included, thus introducing bias without
any apparent lack of fit. To cite an obvious example,
determination of unit-cell dimensions requires an accurate
value of the wavelength of the radiation being used. If this
value is incorrect, inferred values of the cell constants may be
reproduced repeatedly with great precision, but all will be
subject to a systematic bias that has no effect on the quality of
the fit. Even though the structure of the residuals in such a
case reveals little about possible systematic error, it is still
possible to detect it by critical examination of the estimated
parameters.

Even before any data have been collected in preparation for
the determination of a crystal structure, a great deal is known
about certain details. It is known that the crystal is composed of
atoms of certain elements that are present in certain proportions.
It is known that pairs of atoms of various elements cannot be less
than a certain distance apart, and, further, that adjacent atoms
tend to be separated by distances that fall within a rather narrow
range. It is known that thermal vibration amplitudes are likely to
be larger in directions normal to interatomic vectors than parallel
to them, although, particularly in the case of hydrogen bonds,
there may be an apparent amplitude parallel to a vector because
of atomic disorder. Even when there is a particularly unusual

feature in a structure, most of the structure will conform to
commonly observed patterns. Thus, if a refined crystal structure
overall has reasonable features, such as interatomic distances
that are appropriate to oxidation state and coordination number
and displacement ellipsoids that make sense, one or two unusual
features may be accepted with confidence. On the other hand, if
there is wide variation in the lengths of chemically similar bonds,
or if the eigenvectors of the thermal motion tensors point in odd
directions relative to the interatomic vectors, there must be a
presumption that systematic errors have been compensated for
by biased estimates of parameters.

A particular problem arises when there is a question of the
presence or absence of symmetry, such as a choice between two
space groups, one of which possesses a centre of symmetry or a
mirror plane, or a case where a symmetric molecule occupies a
position whose environment has a less-symmetric point group. If
symmetry constraints are relaxed, the model can always be
refined to a lower sum of squared residuals. (For a discussion of
numerical problems that occur in the vicinity of a symmetric
configuration, see Section 8.1.3.) The problem comes from the
fact that the removal of the symmetry element almost always
introduces too many additional parameters. Statistical tests are
then quite likely to indicate that the lower-symmetry model gives
a significantly better fit, but consideration of internal consistency
and chemical or physical plausibility is likely to suggest that
much systematic error has been absorbed by the additional
parameters. The proper procedure is to devise a model with
noncrystallographic constraints (see Section 8.3.2) that expresses
what is, for chemical or physical reasons, known or probable. To
do so may require great patience and perseverence.
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