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8. REFINEMENT OF STRUCTURAL PARAMETERS

q =4 (8.7.3.42)
and for the transformed first and second moments
W= — Xy =gy, —qYs p=p, — qZ;
/’Lt,xa = Koo — ZI’LOIRO( + ngt’
Iop = Has — HoRg — R, + qR.Ry. (8.7.3.43)

For the traceless quadrupole moments, the corresponding
equations are obtained by substitution of r, =r, —R, and
r =r —Rinto (8.7.3.17), which gives

Ol = 0,5 +1(3R,R, —R*8,4)q

=3 (Rppy +Ryrg) + (R, 1) 8, (8.7.3.44)
Y

Similar expressions for the higher moments are reported in the
literature (Buckingham, 1970).

We note that the first non-vanishing moment is origin-
independent. Thus, the dipole moment of a neutral molecule,
but not that of an ion, is independent of origin; the quadrupole
moment of a molecule without charge and dipole moment is not
dependent on the choice of origin and so on. The molecular
electric moments are commonly reported with respect to the
centre of mass.

8.7.3.4.1.4. Total moments as a sum over the pseudoatom

moments

The moments of a molecule or of a molecular fragment are
obtained from the sum over the atomic moments, plus a
contribution due to the shift to a common origin for all but the
monopoles. If individual atomic coordinate systems are used, as
is common if chemical constraints are applied in the least-
squares refinement, they must be rotated to have a common
orientation. Expressions for coordinate system rotations have
been given by Cromer, Larson & Stewart (1976) and by Su &
Coppens (1994a).

The transformation to a common coordinate origin requires
use of the origin-shift expressions (8.7.3.42)-(8.7.3.44), with,

for an atom at r;, R = —r;. The first three moments summed
over the atoms i located at r; become
Giotal = 2 Gi» (8.7.3.45)
Piotal = Z Wi+ 214, (8.7.3.46)
and
Hap total = Z(M‘aﬂi + r;,ﬁi:u'a + r&ill«ﬁ + r(;ir;;iq,') (87347)

with «, 8 = x,y, z; and expressions equivalent to (8.7.3.44) for
the traceless components 6,4

8.7.3.4.1.5. Electrostatic moments of a subvolume of space
by Fourier summation
Expression (8.7.3.16) for the outer moment of a distribution
within a volume element V; may be written as
(8.7.3.16)

/'Lalaz...oq =

f p(r)?ala2a3...a, dr,
Vr

with Valaza}‘.a, = ralrazra3 ce

Toys and integration over the volume
-
Replacement of p(r) by the Fourier summation over the

structure factors gives

1
vy = / VIZF(h)exp( —2mih - r) dr

Vr

1 _ .
=‘—/ZF(h) / 7, exp(—2mih - 1) dr, (8.7.3.48)
Vr

where 7, is the product of / coordinates according to (8.7.3.16),
and u/ represents the moment of the static distribution if the F(h)
are the structure factors on an absolute scale after deconvolution
of thermal motion. Otherwise, the moment of the thermally
averaged density is obtained.

The integral fv y, exp(—2mih - r)dr is defined as the shape
transform S of the volume Vr.

W) = 3 S FWS,, 51,

For regularly shaped volumes, the integral can be evaluated
analytically. A volume of complex shape may be subdivided into
integrable subvolumes such as parallelepipeds. By choosing the
subvolumes sufficiently small, a desired boundary surface can be
closely approximated.

If the origin of each subvolume is located at r;, relative to a
coordinate system origin at P, the total electronic moment
relative to this origin is given by

! (Z VT,,~> = %ZF(h)svr@, h) > " exp(—2mih - 1).
i h i

(8.7.3.49)

Expressions for SV for / <2 and a subvolume parallelepipe-
dal shape are given in Table 8.7.3.2. Since the spherlcal order
Bessel functions j,(x) that appear in the expressions generally
decrease with increasing x, the moments are strongly dependent
on the low-order reflections in a data set. An example is the
shape transform for the dipole moment. Relative to an origin O,

S@,h) = [ rgexp(—2mih - ry)dr.
Vt
A shift of origin by —r; leads to

W' (Vy) = %ZF(h) {SVT@, h) +1, / exp(—2ih - rg) dr
x exp(—2mih - ry)
=u'(Vp) + 1,
in agreement with (8.7.3.46).

8.7.3.4.2. The electrostatic potential

8.7.3.4.2.1. The electrostatic potential and its derivatives
The electrostatic potential @(r’) due to the electronic charge
distribution is given by the Coulomb equation,

p(r)

o) =~ /| ¢

where the constant k is dependent on the units selected, and will
here be taken equal to 1. For an assembly of positive point nuclei
and a continuous distribution of negative electronic charge, we
obtain

(8.7.3.50)

p(r)
P(r) = Z ]RM —v| ) Ir=r] dr,

in which Z,, is the charge of nucleus M located at R,,.

(8.7.3.51)
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8.7. ANALYSIS OF CHARGE AND SPIN DENSITIES

The electric field E at a point in space is the gradient of the
electrostatic potential at that point.

E(r) = —V(r) = —i od(r) i oP(r) B

K 0P(r) .
ox ay 0z

As E is the negative gradient vector of the potential, the electric
force is directed ‘downhill’ and proportional to the slope of the
potential function. The explicit expression for E is obtained by
differentiation of the operator |r —r'|! in (8.7.3.50) towards
x,Y,z and subsequent addition of the vector components. For the
negative slope of the potential in the x direction, one obtains

(8.7.3.52)

E (l'/) — Iototal(r) (l’, - r)x r— ptotal(r) r — l') dr
X |r, _ r|2 |r/ _ l.l |r/ _ r|3 x 5
(8.7.3.53)
which gives, after addition of the components,
E(r) = —Vo(r) = / p,f:)(%r/—ﬁr) dr. (8.7.3.54)

The electric field gradient (EFG) is the tensor product of the
gradient operator V = i +j 3 + k£ and the electric field vector
E;

VE=V:E=-V:Vo. (8.7.3.55)

It follows that in a Cartesian system the EFG tensor is a
symmetric tensor with elements

*o
or, 0rg

VE,; = (8.7.3.56)

The EFG tensor elements can be obtained by differentiation of
the operator in (8.7.3.53) for E, to each of the three directions g.
In this way, the traceless result

9K
VE, (') = — 4
ap(r") Arg —1rp)
1 / /
= _/|r - {3(ra — 1) (ry —15)
12
—|r=r 5aﬂ} Pro (1) dr (8.7.3.57)

is obtained. We note that according to (8.7.3.57) the electric
field gradient can equally well be interpreted as the tensor
of the traceless quadrupole moments of the distribution
—2p,0(T)/Ir —¥'|° [see equation (8.7.3.17)].

Definition (8.7.3.56) and result (8.7.3.57) differ in that
(8.7.3.56) does not correspond to a zero-trace tensor. The
situation is analogous to the two definitions of the second
moments, discussed above, and is illustrated as follows. The
trace of the tensor defined by (8.7.3.56) is given by
ro Fo I
™ + o7 + Bz2>' (8.7.3.58)
Poisson’s equation relates the divergence of the gradient of the
potential @(r) to the electron density at that point:

V2d(r) = —47[—p,(r)] = 47p,(x). (8.7.3.59)

Thus, the EFG as defined by (8.7.3.56) is not traceless, unless
the electron density at r is zero.

The potential and its derivatives are sometimes referred to as
inner moments of the charge distribution, since the operators in
(8.7.3.50), (8.7.3.52) and (8.7.3.54) contain the negative power
of the position vector. In the same terminology, the electrostatic
moments discussed in §8.7.3.4.1 are described as the outer
moments.

—V2<I>:—V-Vcb:—<

Table 8.7.3.2. Expressions for the shape factors S for a

parallelepiped with edges §,, §,, and 5, (from Moss & Coppens,
1981)

Jo and j, are the zero- and first-order spherical Bessel functions:
Jo(®) = sinx/x, j,(x) = sinx/x* — cosx/x; Vy is volume of integration.

5 Property S[y(r), h]
1 Charge Vi jo(2rh,8,) jo(27hy8,) jo(27h,8,)
ry Dipole i, —iVr8, j1(27h,3,,)
X Jo(27hgd4) jo(27th,,,)
T g Second moment —Vr8,85j1(27h,8,,)

I,z Off-diagonal . .
g & % j1(27h85) jo(27h. 5.)

| Qrh5,)
-V, {h(nh—a) _.]O(Znha(sa)}

Second moment
Iy diagonal

X jo(27hs8 ) jo(27th, 5.,)

It is of interest to evaluate the electric field gradient at the
atomic nuclei, which for several types of nuclei can be
measured accurately by nuclear quadrupole resonance and
Mossbauer spectroscopy. The contribution of the atomic
valence shell centred on the nucleus can be obtained by
substitution of the multipolar expansion (8.7.3.7) in
(8.7.3.57). The quadrupolar (/ =2) terms in the expansion
contribute to the integral. For the radial function
R, = {03 /[n(]) + 2]} exp(—¢r) with n(l) = 2, the follow-
ing expressions are obtained:

VE;, = +(3/5) <WP22+ - \/§P20> o,
VE,, = —(3/5) (JTP22+ + \/gpzo) o,

VEq; = +(6/5)(V3Px) Q..

VE, = +(3/5)(7wPy, )0,,
VE; = +(3/5)(7Py,) 0.,
VE,; = +3/5)(#P,,)0,,

(8.7.3.60)

with

Q= <r3>3d
= Of[R(r)/r]dr

= (') [Iny(ny + 1)(ny +2)]
= (K'9)’ /120,

in the case that n, = 4 (Stevens, DeLucia & Coppens, 1980).

The contributions of neighbouring atoms can be sub-
divided into point-charge, point-multipole, and penetration
terms, as discussed by Epstein & Swanton (1982) and Su &
Coppens (1992, 1994b), where appropriate expressions are
given. Such contributions are in particular important when
short interatomic distances are involved. For transition-metal
atoms in coordination complexes, the contribution of
neighbouring atoms is typically much smaller than the
valence contribution.
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8. REFINEMENT OF STRUCTURAL PARAMETERS

8.7.3.4.2.2. Electrostatic

distribution

Hirshfelder, Curtiss & Bird (1954) and Buckingham (1959)
have given an expression for the potential at a point r; outside a
charge distribution:

potential outside a charge

q Holy @O‘
o(r;) = St +3 [3rarg — 178,] rgﬂ

1 l

2
+ [Sryrsry — P (rudp, + 158y +1,845) ] ij;y +...,

(8.7.3.61)

where summation over repeated indices is implied. The outer
moments g, i,, P,z and §2,4, in (8.7.3.61) must include the
nuclear contributions, but, for a point outside the distribution,
the spherical neutral-atom densities and the nuclear contributions
cancel, so that the potential outside the charge distribution can be
calculated from the deformation density.

The summation in (8.7.3.61) is slowly converging if the
charge distribution is represented by a single set of moments.
When dealing with experimental charge densities, a multicentre
expansion is available from the analysis, and (8.7.3.61) can be
replaced by a summation over the distributed moments centred at
the nuclear positions, in which case r; measures the distance
from a centre of the expansion to the field point. The result is
equivalent to more general expressions given by Su & Coppens
(1992), which, for very large values of r;, reduce to the sum over
atomic terms, each expressed as (8.7.3.61). The interaction
between two charge distributions, A and B, is given by

Ep= f & ,4(r)pp(r)dr,

where pj includes the nuclear charge distribution.

8.7.3.4.2.3. Evaluation of the electrostatic functions in direct

space

The electrostatic properties of a well defined group of atoms
can be derived directly from the multipole population coeffi-
cients. This method allows the ‘lifting’ of a molecule out of the
crystal, and therefore the examination of the electrostatic
quantities at the periphery of the molecule, the region of interest
for intermolecular interactions. The difficulty related to the
origin term, encountered in the reciprocal-space methods, is
absent in the direct-space analysis.

In order to express the functions as a sum over atomic
contributions, we rewrite (8.7.3.51), (8.7.3.54) and (8.7.3.57)
for the electrostatic properties at point P as a sum over atomic
contributions.

Zy /IoeM(rM)
P?(R)) = — : dr;,,
(R,) MZ#|RMP| ; e oM

Z,pR r,0, u(r
ER,) = - “MPoMr | \- / ""%EM) dr,. (8.7.3.63)
M )4

(8.7.3.62)

=t IRyl
Zy(3R,Ry — 8,5 Rypl”)
VEO”S(RP) _ Z M B Sﬂ MP
2 Ry
1,37, 15 — 8uslr,
+z/loe,M( M)( |ct ,|35 aﬂ' p| )drM’ (87364)
M T

in which the exclusion of M =P only applies when the
point P coincides with a nucleus, and therefore only occurs
for the central contributions. Z,, and R, are the nuclear
charge and the position vector of atom M, respectively,

while r, and r,, are, respectively, the vectors from P and
from the nucleus M to a point r, such that rp =r —R,,
and r,, =r—R,, =r, + R, — R, =1, — R;;p. The subscript
M in the second, electronic part of the expressions refers to
density functions centred on atom M.

Expressions for the evaluation of (8.7.3.62)-(8.7.3.64) from
the charge-density parameters of the multipole expansion have
been given by Su & Coppens (1992). They employ the Fourier
convolution theorem, used by Epstein & Swanton (1982) to
evaluate the electric field gradient at the atomic nuclei. A direct-
space method based on the Laplace expansion of 1/|R, — r| was
reported by Bentley (1981).

8.7.3.4.3. Electrostatic functions of crystals by modified
Fourier summation

Expression (8.7.3.49) is an example of derivation of
electrostatic properties by direct Fourier summations of the
structure factors. The electrostatic potential and its derivatives
may be obtained in an analogous manner.

In order to obtain the electrostatic properties of the total
charge distribution, it is convenient to define the ‘total’ structure
factor F,,,(h) including the nuclear contribution,

Fiy(h) = Fy(h) — F(h),

otal

where Fy(h) = ) . Z exp(2rih - R;), the summation being over
all atoms j with nuclear charge Z, located at R;. If &(h) is
defined as the Fourier transform of the direct-space potential, we
have

&(r) = [ ®(h)exp(—2nih - r)dh
and
V2d(r) = —47” [ R ®(h) exp(—27ih - r) dh,

which equals —4mp,,, according to the Poisson equation
(8.7.3.59). One obtains with

Protar(T) = tholal(h) exp(—2mih - r) dh,

@&(h) = +F101a1(h)/nh2, (8.7.3.65)
and, by inverse Fourier transformation of (8.7.3.65),
1 .
o) = — > " Fioa(h)/R* exp(—2rih - r) (8.7.3.66)

(Bertaut, 1978; Stewart, 1979). Furthermore, the electric field
due to the electrons is given by

E(r) = —V,&(r) = —V [ &(h) exp(—27ih - r) dh
= 2ni [ h@(h) exp(—2mih - r) dh.
Thus, with (8.7.3.65),

E(r) = % > [Fow®)/h|hexp(—27ih -x),  (8.7.3.67a)

which implies
2i
E(h) = ﬁthotal(h)'

Similarly, the h Fourier component of the electric field gradient
tensor with trace 4p(r) is

[V : E](h) = +47*h : hé(h) = +47h : hF,, (h)/H,
(8.7.3.67b)
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