International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 8.7, p. 728

Section 8.7.4.4.3. Polarized neutron scattering

P. Coppens,a Z. Sub and P. J. Beckerc

a 732 NSM Building, Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA,bDigital Equipment Co., 129 Parker Street, PKO1/C22, Maynard, MA 01754-2122, USA, and cEcole Centrale Paris, Centre de Recherche, Grand Voie des Vignes, F-92295 Châtenay Malabry CEDEX, France

8.7.4.4.3. Polarized neutron scattering

| top | pdf |

It is generally possible to polarize the incident beam by using as a monochromator a ferromagnetic alloy, for which at a given Bragg angle [I_\downarrow{\rm (monochromator)}=0], because of a cancellation of nuclear and magnetic scattering components. The scattered-beam intensity is thus [I_\uparrow]. By using a radio-frequency (r.f.) coil tuned to the Larmor frequency of the neutron, the neutron spin can be flipped into the [(\downarrow)] state for which the scattered beam intensity is [I_\downarrow]. This allows measurement of the `flipping ratio' R(h): [R({\bf h}) = {I_\uparrow({\bf h}) \over I_\downarrow ({\bf h})}. \eqno (8.7.4.42)]As the two measurements are made under similar conditions, most systematic effects are eliminated by this technique, which is only applicable to cases where both [F_N] and [F_M] occur at the same scattering vectors. This excludes any antiferromagnetic type of ordering.

The experimental set-up is discussed by Forsyth (1980[link]).

References

First citation Forsyth, J. B. (1980). In Electron and magnetization densities in molecules and solids, edited by P. Becker. New York/London: Plenum.Google Scholar








































to end of page
to top of page