9.2. LAYER STACKING Table 9.2.1.1. Common close-packed metallic structures | Stacking sequence | | Ramsdell notation | | Jagodzinski
notation | Proto-
type | |-------------------|---|-------------------|----|-------------------------|----------------| | AB, A | 2 | 2H | 11 | h | Mg | | ABC, A | 3 | 3C | ∞ | c | Cu | | ABCB, A | 4 | 4H | 22 | hc | La | | ABCBCACAB, A | 9 | 9R | 21 | hhc | Sm | cyclic $(A \to B \to C \to A)$ or anticyclic $(A \to C \to B \to A)$ shift of layers in the same plane. The vector s can be either $(1/3)[\bar{1}00]$, $(1/3)[01\bar{1}0]$, or $(1/3)[\bar{1}010]$. Zhdanov (1945) suggested summing the number of consecutive offsets of each kind and designating them by numeral figures. Successive numbers in the Zhdanov symbol have opposite signs. The rhombohedral stackings have three identical sets of Zhdanov symbols in an identity period. It is usually sufficient to write only one set. Yet another notation advanced, amongst others, by Jagodzinski (1949a) makes use of configurational symbols for each layer. A layer is designated by the symbol h or c according as its neighbouring layers are alike or different. Letter 'k' in place of 'c' is also used in the literature. Some of the common close-packed structures observed in metals are listed in Table 9.2.1.1 in terms of all the notations. # 9.2.1.2. Structure of compounds based on close-packed layer stackings Frequently, the positions of one kind of atom or ion in inorganic compounds, such as SiC, ZnS, CdI_2 , and GaSe, correspond approximately to those of equal spheres in a close packing, with the other atoms being distributed in the voids. All such structures will also be referred to as close-packed structures though they may not be ideally close packed. In the close-packed compounds, the size and coordination number of the smaller atom/ion may require that its close-packed neighbours in the neighbouring layers do not touch each other. Fig. 9.2.1.3. Voids in a close packing: (a) tetrahedral void; (b) tetrahedron formed by the centres of spheres; (c) octahedral void; (d) octahedron formed by the centres of spheres. ## 9.2.1.2.1. Voids in close packing Three-dimensional close packings of spheres have two kinds of voids (Azaroff, 1960): - (i) If the triangular interstices in a close-packed layer have spheres directly over them, the resulting voids are called tetrahedral voids because the four spheres surrounding the void are arranged at the corners of a regular tetrahedron (Figs. 9.2.1.3a,b). If R denotes the radius of the four spheres surrounding a tetrahedral void, the radius of the sphere that would just fit into this void is given by 0.225R (Verma & Krishna, 1966). The centre of the tetrahedral void is located at a distance 3h/4 from the centre of the sphere on top of it. - (ii) If the triangular interstices pointing up in one close-packed layer are covered by triangular interstices pointing down in the adjacent layer, the resulting voids are called octahedral voids (Figs. 9.2.1.3c,d) since the six spheres surrounding each such void lie at the corners of a regular octahedron. The radius of the sphere that would just fit into an octahedral void is given by 0.414R (Verma & Krishna, 1966). The centre of this void is located half way between the two layers of spheres. While there are twice as many tetrahedral voids as the spheres in close packing, the number of octahedral voids is equal to the number of spheres (Krishna & Pandey, 1981). ## 9.2.1.2.2. Structures of SiC and ZnS SiC has a binary tetrahedral structure in which Si and C layers are stacked alternately, each carbon layer occupying half the tetrahedral voids between successive close-packed silicon layers. One can regard the structure as consisting of two identical interpenetrating close packings, one of Si and the other of C, with the latter displaced relative to the former along the stacking axis through one fourth of the layer spacing. Since the positions of C atoms are fixed relative to the positions of layers of Si atoms, it is customary to use the letters A, B, and C as representing Si–C double layers in the close packing. To be more exact, the three kinds of layers need to be written as $A\alpha$, $B\beta$, and $C\gamma$ where Roman and Greek letters denote the positions of Si and C atoms, respectively. Fig. 9.2.1.4 depicts the structure of SiC-6H, which is the most common modification. Fig. 9.2.1.4. Tetrahedral arrangement of Si and C atoms in the SiC-6*H* structure. #### 9. BASIC STRUCTURAL FEATURES Table 9.2.1.2. List of SiC polytypes with known structures in order of increasing periodicity (after Pandey & Krishna, 1982a) | | - | _ | | |---|---|--|--| | Polytype | Structure
(Zhdanov sequence) | Polytype | Structure (Zhdanov sequence) | | 2 <i>H</i> 3 <i>C</i> 4 <i>H</i> 6 <i>H</i> 8 <i>H</i> 10 <i>H</i> 14 <i>H</i> 15 <i>R</i> 16 <i>H</i> ₁ | (Zhdanov sequence) 11 ∞ 22 33 44 3322 (22) ₂ 33 23 (33) ₂ 22 (22) ₃ 33 | 57 H
57 R
69 R ₁
69 R ₂
75 R ₂
81 H
84 R
87 R
90 R
93 R | (Zhdanov sequence) (23) ₉ 3333 (33) ₂ 34 (33) ₃ 32 33322334 (32) ₃ (23) ₂ (33) ₅ 35(33) ₆ 34 (33) ₃ (32) ₂ (33) ₄ 32 (23) ₄ 3322 (33) ₄ 34 | | 19H
20H
21H
21H ₂
21R
24R
27H
27R
33R
33H
34H
36H ₁ | (22) ₃ 32
(23) ₃ 22
(22) ₃ 44
333534
(33) ₂ 63
34
35
(33) ₂ (23) ₃
2223
3332
(33) ₂ 353334
(33) ₄ 2332
(33) ₂ 32(33) ₂ 34 | 96R ₁
99R
105R
111R
120R
123R
126R
129R
125R
141R
147R
150R ₁ | (33) ₃ 3434
(33) ₃ 3434
(33) ₄ 3222
(33) ₅ 32
(33) ₅ 34
(22) ₅ 23222333
(33) ₆ 32
(33) ₂ 2353433223
(33) ₂ 33(33) ₃ 23
(33) ₇ 32
(3332) ₄ 32
(23) ₃ 32(23) ₃ 322332 | | 36 H ₂
39 H
39 R
40 H
45 R
51 R ₁
51 R ₂
54 H | (33) ₄ 3234
(33) ₄ 3234
(33) ₂ 32(33) ₃ (32) ₂
3334
(33) ₅ 2332
(23) ₂ 32
(33) ₂ 32
(22) ₃ 23
(33) ₆ 323334 | 150 R ₁
150 R ₂
159 R
168 R
174 R
189 R
267 R
273 R
393 R | (25) ₃ 32(25) ₃ 322332
(23) ₂ (3223) ₄
(33) ₈ 32
(23) ₁₀ 33
(33) ₆ 6(33) ₅ 4
(34) ₈ 43
(23) ₁₇ 22
(23) ₁₇ 33
(33) ₂₁ 32 | A large number of crystallographically different modifications of SiC, called polytypes, has been discovered in commercial crystals grown above 2273 K (Verma & Krishna, 1966; Pandey & Krishna, 1982a). Table 9.2.1.2 lists those polytypes whose structures have been worked out. All these polytypes have $a = b = 3.078 \,\text{Å}$ and $c = n \times 2.518 \,\text{Å}$, where n is the number of Si-C double layers in the hexagonal cell. The 3C and 2Hmodifications, which normally result below 2273 K, are known to undergo solid-state structural transformation to 6H (Jagodzinski, 1972; Krishna & Marshall, 1971a,b) through a non-random insertion of stacking faults (Pandey, Lele & Krishna, 1980a,b,c; Kabra, Pandey & Lele, 1986). The lattice parameters and the average thickness of the Si-C double layers vary slightly with the structure, as is evident from the h/a ratios of 0.8205 (Adamsky & Merz, 1959), 0.8179, and 0.8165 (Taylor & Jones, 1960) for the 2H, 6H, and 3C structures, respectively. Even in the same structure, crystal-structure refinement has revealed variation in the thickness of Si-C double layers depending on their environment (de Mesquita, 1967). The structure of ZnS is analogous to that of SiC. Like the latter, ZnS crystals grown from the vapour phase also display a large variety of polytype structures (Steinberger, 1983). ZnS crystals that occur as minerals usually correspond to the wurtzite (/AB/...) and the sphalerite (/ABC/...) modifications. The structural transformation between the 2H and 3C structures of ZnS is known to be martensitic in nature (Sebastian, Pandey & Krishna, 1982; Pandey & Lele, 1986b). The h/a ratio for ZnS-2H is 0.818, which is somewhat different from the ideal value (Verma & Krishna, 1966). The structure of the stackings in polytypic AgI is analogous to those in SiC and ZnS (Prager, 1983). ### 9.2.1.2.3. Structure of CdI_2 The structure of cadmium iodide consists of a close packing of the I ions with the Cd ions distributed amongst half the octahedral voids. Thus, the Cd and I layers are not stacked alternately; there is one Cd layer after every two I layers as shown in Fig. 9.2.1.5. The structure actually consists of molecular sheets (called minimal sandwiches) with a layer of Cd ions sandwiched between two close-packed layers of I ions. The bonding within the minimal sandwich is ionic in character and is much stronger than the bonding between successive sandwiches, which is of van der Waals type. The importance of polarization energy for the stability of such structures has recently been emphasized by Bertaut (1978). It is because of the weak van der Waals bonding between the successive minimal sandwiches that the material possesses the easy cleavage characteristic of a layer structure. In describing the layer stackings in the CdI₂ structure, it is customary to use Roman letters to denote the I positions and Greek letters for the Cd positions. The two most common modifications of CdI₂ are 4H and 2H with layer stackings $A\gamma B C\alpha B...$ and $A\gamma B A\gamma B$, respectively. In addition, this material also displays a number of polytype modifications of large repeat periods (Trigunayat & Verma, 1976; Pandey & Krishna, 1982a). From the structure of CdI₂, it follows that the identity period of all such modifications must consist of an even number of I layers. The h/a ratio in all these modifications of CdI₂ is 0.805, which is very different from the ideal value (Verma & Krishna, 1966). The structure of PbI₂, which also displays a large number of polytypes, is analogous to CdI₂ with one important difference. Here, the distances between two I layers with and without an intervening Pb layer are quite different (Trigunayat & Verma, 1976). ### 9.2.1.2.4. Structure of GaSe The crystal structure of GaSe consists of four-layered slabs, each of which contains two close-packed layers of Ga (denoted by symbols A, B, C) and Se (denoted by symbols α , β , γ) each in the sequence Se–Ga–Ga–Se (Terhell, 1983). The Se atoms sit on the corners of a trigonal prism while each Ga atom is tetrahedrally coordinated by three Se and one Ga atoms. If the Se layers are of A type, then the stacking sequence of the four Fig. 9.2.1.5. The layer structure of CdI₂: small circles represent Cd ions and larger ones I ions (after Wells, 1945). layers in the slab can be written as $A\beta\beta A$ or $A\gamma\gamma A$. There are thus six possible sequences for the unit slab. These unit slabs can be stacked in the manner described for equal spheres. Thus, for example, the 2H structure can have three different layer stackings: $/A\beta\beta AB\gamma\gamma B/\dots$, $/A\beta\beta AB\alpha\alpha B/\dots$ and $/A\beta\beta AC\beta\beta C/$. Periodicities containing up to 21 unit slabs have been reported for GaSe (see Terhell, 1983). The bonding between the layers of a slab is predominantly covalent while that between two adjacent slabs is of the van der Waals type, which imparts cleavage characteristics to this material. # 9.2.1.3. Symmetry of close-packed layer stackings of equal spheres It can be seen from Fig. 9.2.1.2(a) that a stacking of two or more layers in the close-packed manner still possesses all three symmetry planes but the twofold axes disappear while the sixfold axes coincide with the threefold axes (Verma & Krishna, 1966). The lowest symmetry of a completely arbitrary periodic stacking sequence of close-packed layers is shown in Fig. 9.2.1.2(b). Structures resulting from such stackings therefore belong to the trigonal system. Even though a pure sixfold axis of rotation is not possible, close-packed structures belonging to the hexagonal system can result by virtue of at least one of the three symmetry axes parallel to [00.1] being a 63 axis (Verma & Krishna, 1966). This is possible if the layers in the unit cell are stacked in special ways. For example, a 6H stacking sequence /ABCACB/... has a 6_3 axis through 0, 0. It follows that, for an nH structure belonging to the hexagonal system, n must be even. A packing nH/nR with n odd will therefore necessarily belong to the trigonal system and can have either a hexagonal or a rhombohedral lattice (Verma & Krishna, 1966). Other symmetries that can arise by restricting the arbitrariness of the stacking sequence in the identity period are: (i) a centre of symmetry at the centre of either the spheres or the octahedral voids; and (ii) a mirror plane perpendicular to [00.1]. Since there must be two centres of symmetry in the unit cell, the centrosymmetric arrangements may possess both centres either at sphere centres/octahedral void centres or one centre each at the centres of spheres and octahedral voids (Patterson & Kasper, 1959). ## 9.2.1.4. Possible lattice types Close packings of equal spheres can belong to the trigonal, hexagonal, or cubic crystal systems. Structures belonging to the hexagonal system necessarily have a hexagonal lattice, i.e. a lattice in which we can choose a primitive unit cell with $a = b \neq c$, $\alpha = \beta = 90^{\circ}$, and $\gamma = 120^{\circ}$. In the primitive unit cell of the hexagonal close-packed structure $\langle AB \rangle$... shown in Fig. 9.2.1.6, there are two spheres associated with each lattice point, one at 0, 0, 0 and the other at $\frac{1}{3}$, $\frac{2}{3}$, $\frac{1}{2}$. Structures belonging to the trigonal system can have either a hexagonal or a rhombohedral lattice. By a rhombohedral lattice is meant a lattice in which we can choose a primitive unit cell with $a=b=c, \ \alpha=\beta=\gamma\neq90^{\circ}$. Both types of lattice can be referred to either hexagonal or rhombohedral axes, the unit cell being non-primitive when a hexagonal lattice is referred to rhombohedral axes and vice versa (Buerger, 1953). In closepacked structures, it is generally convenient to refer both hexagonal and rhombohedral lattices to hexagonal axes. Fig. 9.2.1.7 shows a rhombohedral lattice in which the primitive cell is defined by the rhombohedral axes a_1, a_2, a_3 ; but a nonprimitive hexagonal unit cell can be chosen by adopting the axes A_1, A_2, C . The latter has lattice points at $0, 0, 0; \frac{2}{3}, \frac{1}{3}, \frac{1}{3}$; and $\frac{1}{3}, \frac{2}{3}, \frac{2}{3}$. If this rhombohedral lattice is rotated through 60° around [00.1], the hexagonal unit cell will then be centred at $\frac{1}{3}$, $\frac{2}{3}$, $\frac{1}{3}$ and $\frac{2}{3}$, $\frac{1}{3}$. These two settings are crystallographically equivalent for close packing of equal spheres. They represent twin arrangements when both occur in the same crystal. The hexagonal unit cell of an nR structure is made up of three elementary stacking sequences of n/3 layers that are related to each other either by an anticyclic shift of layers $A \to C \to B \to A$ (obverse setting) or by a cyclic shift of layers $A \to B \to C \to A$ (reverse setting) in the direction of z increasing (Verma & Krishna, 1966). Evidently, n must be a multiple of 3 for nR structures. In the special case of the close packing $/ABC/\dots$ [with the ideal axial ratio of $\sqrt{(2/3)}$], the primitive rhombohedral unit cell has $\alpha=\beta=\gamma=60^\circ$, which enhances the symmetry and enables the choice of a face-centred cubic unit cell. The relationship between the face-centred cubic and the rhombohedral unit cell is shown in Fig. 9.2.1.8. The threefold axis of the rhombohedral unit cell coincides with one of the $\langle 111 \rangle$ directions of the cubic unit cell. The close-packed layers are thus parallel to the $\{111\}$ planes in the cubic close packing. ## 9.2.1.5. Possible space groups It was shown by Belov (1947) that consistent combinations of the possible symmetry elements in close packing of equal spheres can give rise to eight possible space groups: P3m1, P3m1, Fig. 9.2.1.6. The primitive unit cell of the 2H close packing. Fig. 9.2.1.7. A rhombohedral lattice (a_1, a_2, a_3) referred to hexagonal axes (A_1, A_2, C) (after Buerger, 1953).