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family depends mainly on the idealization and/or abstraction
level, relevant to a concrete purpose.

This very idealization and/or abstraction process caused the
term polytype to become also an abstract notion meaning a
structural type with relevant geometrical properties,* belonging
to an abstract family whose members consist of layers with
identical structure and keep identical bulk composition. Such an
abstract notion lies at the root of all systemization and
classification schemes of polytypes.

A still higher degree of abstraction has been achieved by
Dornberger-Schiff (1964, 1966, 1979) who abstracted from
chemical composition completely and investigated the manifes-
tation of crystallochemical reasons for polytypism in the
symmetry of layers and symmetry relations between layers. Her
theory of OD (order-disorder) structures is thus a theory of
symmetry of polytypes, playing here a role similar to that of
group theory in traditional crystallography. In the next section, a
brief account of basic terms, definitions, and logical construc-
tions of OD theory will be given, together with its contribution to
a geometrical definition of polytypism.

9.2.2.2. Symmetry aspects of polytypism
9.2.2.2.1. Close packing of spheres

Polytypism of structures based on close packing of equal
spheres (note this idealization) is explained by the fact that the
spheres of any layer can be placed either in all the voids V of the
preceding layer, or in all the voids A - not in both because of
steric hindrance (Section 9.2.1, Fig. 9.2.1.1).

A closer look reveals that the two voids are geometrically (but
not translationally) equivalent. This implies that the two possible
pairs of adjacent layers, say AB and AC, are geometrically
equivalent too - this equivalence is brought about e.g. by a
reflection in any plane perpendicular to the layers and passing
through the centres of mutually contacting spheres A: such a
reflection transforms the layer A into itself, and B into C, and
vice versa. Another important point is that the symmetry proper
of any layer is described by the layer group P(6/m)mm,T and that
the relative position of any two adjacent layers is such that only
some of the 24 symmetry operations of that layer group remain
valid for the pair. It is easy to see that 12 out of the total of 24
transformations do not change the z coordinate of any starting
point, and that these operations constitute a subgroup of the
index [2]. These are the so-called t operations. The remaining
12 operations change any z into —z, thus turning the layer upside
down; they constitute a coset. The latter are called p operations.
Out of the 12 7 operations, only 6 are valid for the layer pair.
One says that only these 6 operations have a continuation in the
adjacent layer. Let us denote the general multiplicity of the
group of 7 operations of a single layer by N, and that of the
subgroup of these operations with a continuation in the adjacent
layer by F: then the number Z of positions of the adjacent layer
leading to geometrically equivalent layer pairs is given by
Z = N/F (Dornberger-Schiff, 1964, pp. 32 ff.); in our case,
Z =12/6 =2 (Fig. 9.2.2.1). This is the so-called NFZ relation,
valid with only minor alterations for all categories of OD
structures (§9.2.2.2.7). It follows that all conceivable structures
based on close packing of equal spheres are built on the same

*This is an interesting example of how a development in a scientific discipline
influences semantics: e.g. when speaking of a 6H polytype of SiC, one has very
often in mind a characteristic sequence of Si-C layers rather than deviations from
stoichiometry, presence and distribution of foreign atoms, distortion of
coordination tetrahedra, etc.

T The direction in which there is no periodicity is indicated by parentheses
(Dornberger-Schiff, 1959).

symmetry principle: they consist of equivalent layers (i.e. layers
of the same kind) and of equivalent layer pairs, and, in keeping
with these stipulations, any layer can be stacked onto its
predecessor in two ways. Keeping in mind that the layer pairs
that are geometrically equivalent are also energetically equiva-
lent, and neglecting in the first approximation the interactions
between a given layer and the next-but-one layer, we infer that
all structures built according to these principles are also
energetically equivalent and thus equally likely to appear.

It is important to realize that the above symmetry considera-
tions hold not only for close packing of spheres but also for any
conceivable structure consisting of two-dimensionally periodic
layers with symmetry P(6/m)mm and containing pairs of
adjacent layers with symmetry P(3)ml. Moreover, the OD
theory sets a quantitative stipulation for the relation between any
two adjacent layers: they have to remain geometrically
equivalent in any polytype belonging to a family. This is far
more exact than the description: ‘the stacking of layers is such
that it preserves the nearest-neighbour relationships’.

9.2.2.2.2. Polytype families and OD groupoid families

All polytypes of a substance built on the same structural
principle are said to belong to the same family. All polytypic
structures, even of different substances, built according to the
same symmetry principle also belong to a family, but different
from the previous one since it includes structures of various
polytype families, e.g. SiC, ZnS, Agl, which differ in their
composition, lattice dimensions, efc. Such a family has been
called an OD groupoid family; its members differ only in the
relative distribution of coincidence operations* describing the
respective symmetries, irrespective of the crystallochemical
content. These coincidence operations can be fotal or partial
(local) and their set constitutes a groupoid (Dornberger-Schiff,
1964, pp. 16 ff.; Fichtner, 1965, 1977). Any polytype (abstract)
belonging to such a family has its own stacking of layers, and
its symmetry can be described by the appropriate individual
groupoid. Strictly speaking, these groupoids are the members of
an OD groupoid family. Let us recall that any space group

* A coincidence operation is a space transformation (called also isometric
mapping, isometry, or motion), which preserves distances between any two points
of the given object.

Single layer Layer group
P(6/m)mm
7 subgroup

P(6)mm

Layer group
of the layer pair
P(3)m1

Layer pair F=6

Fig. 9.2.2.1. Symmetry interpretation of close packings of equal
spheres. The layer group of a single layer, the subgroup of its t
operations, and the number of asymmetric units N per unit mesh of the
former, are given at the top right. The 7 operations that have a
continuation for the pair of adjacent layers, the layer group of the
pair, and the value of F are indicated at the bottom right.
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consists of total coincidence operations only, which therefore
become the symmetry operations for the entire structure.

9.2.2.2.3. MDO polytypes

Any family of polytypes theoretically contains an infinite
number of periodic (Ross, Takeda & Wones, 1966; Mogami,
Nomura, Miyamoto, Takeda & Sadanaga, 1978; McLarnan,
1981a,b,c) and non-periodic structures. The periodic polytypes,
in turn, can again be subdivided into two groups, the ‘privileged’
polytypes and the remaining ones, and it depends on the
approach as to how this is done. Experimentalists single out
those polytypes that occur most frequently, and call them basic.
Theorists try to predict basic polytypes, e.g. by means of
geometrical and/or crystallochemical considerations. Such
polytypes have been called simple, standard, or regular.
Sometimes the agreement is very good, sometimes not. The
OD theory pays special attention to those polytypes in which all
layer triples, quadruples, etc., are geometrically equivalent or,
at least, which contain the smallest possible number of kinds of
these units. They have been called polytypes with maximum
degree of order, or MDO polytypes. The general philosophy
behind the MDO polytypes is simple: all interatomic bonding
forces decrease rapidly with increasing distance. Therefore, the
forces between atoms of adjacent layers are decisive for the
build-up of a polytype. Since the pairs of adjacent layers remain
geometrically equivalent in all polytypes of a given family, these
polytypes are in the first approximation also energetically
equivalent. However, if the longer-range interactions are also
considered, then it becomes evident that layer triples such as
ABA and ABC in close-packed structures are, in general,
energetically non-equivalent because they are also geometrically
non-equivalent. Even though these forces are much weaker than
those between adjacent layers, they may not be negligible and,
therefore, under given crystallization conditions either one or the
other kind of triples becomes energetically more favourable. It
will occur again and again in the polytype thus formed, and not
intermixed with the other kind. Such structures are - as a rule -
sensitive to conditions of crystallization, and small fluctuations
of these may reverse the energetical preferences, creating
stacking faults and twinnings. This is why many polytypic
substances exhibit non-periodicity.

As regards the close packing of spheres, the well known cubic
and hexagonal polytypes ABCABC ... and ABAB..., respec-
tively, are MDO polytypes; the first contains only the triples
ABC, the second only the triples ABA. Evidently, the MDO
philosophy holds for a layer-by-layer rather than for a spiral
growth mechanism. Since the symmetry principle of polytypic
structures may differ considerably from that of close packing of
equal spheres, the OD theory contains exact algorithms for the
derivation of MDO polytypes in any category (Dornberger-
Schiff, 1982; Dornberger-Schiff & Grell, 1982a).

9.2.2.2.4. Some geometrical properties of OD structures

As already pointed out, all relevant geometrical properties of a
polytype family can be deduced from its symmetry principle. Let
us thus consider a hypothetical simple family in which we shall
disregard any concrete atomic arrangements and use geometrical
figures with the appropriate symmetry instead.

Three periodic polytypes are shown in Fig. 9.2.2.2 (left-hand
side). Any member of this family consists of equivalent layers
perpendicular to the plane of the drawing, with symmetry
P(1)ml1. The symmetry of layers is indicated by isosceles
triangles with a mirror plane [.m.]. All pairs of adjacent layers
are also equivalent, no matter whether a layer is shifted by +b/4

or —b/4 relative to its predecessor, since the reflection across
[.m.] transforms any given layer into itself and the adjacent layer
from one possible position into the other. These two positions
follow also from the NFZ relation: N =2, F =1 [the layer
group of the pair of adjacent layers is P(1)11] and thus Z = 2.

The layers are all equivalent and accordingly there must also
be two coincidence operations transforming any layer into the
adjacent one. The first operation is evidently the translation, the
second is the glide reflection. If any of these becomes total for
the remaining part of the structure, we obtain a polytype with all
layer triples equivalent, i.e. a MDO polytype. The polytype (a)
(Fig. 9.2.2.2) is one of them: the translation t = a, + b/4 is the
total operation (|a,| is the distance between adjacent layers). It
has basis vectors a, =a,+b/4, b, =b, ¢, =c, space group
P111, Ramsdell symbol 14,* Hégg symbol | + |. This polytype
also has its enantiomorphous counterpart with Hégg symbol
| — |. In the other polytype (b) (Fig. 9.2.2.2), the glide reflection
is the total operation. The basis vectors of the polytype are

* According to Guinier et al. (1984), triclinic polytypes should be designated A
(anorthic) in their Ramsdell symbols.
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Fig. 9.2.2.2. Schematic representation of three structures belonging to
the OD groupoid family P(1)ml1|1, y = 0.25 (left). The layers are
perpendicular to the plane of the drawing and their constituent atomic
configurations are represented by isosceles triangles with symmetry
[.m.]. All structures are related to a common orthogonal four-layer
cell with a = 4a,,. The #kO nets in reciprocal space corresponding to
these structures are shown on the right and the diffraction indices refer
also to the common cell. Family diffractions common to all members
of this family (k=2k) and the characteristic diffractions for
individual polytypes (k = 2k + 1) are indicated by open and solid
circles, respectively.
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a, =2a,, b, =b, ¢, = ¢, space group Plal, Ramsdell symbol
2M, Hagg symbol | + —|. The equivalence of all layer triples in
either of these polytypes is evident. The third polytype (c) (Fig.
9.2.2.2) is not a MDO polytype because it contains two kinds of
layer triples, whereas it is possible to construct a polytype of this
family containing only a selection of these. The polytype is again
monoclinic with basis vectors a; = 4a,, b; = b, ¢; = ¢, space
group Plal, Ramsdell symbol 4M, and Higg symbol
|4+ — =+l

Evidently, the partial mirror plane is crucial for the
polytypism of this family. And yet the space group of none of
its periodic members can contain it — simply because it can never
become total. The space-group symbols thus leave some of the
most important properties of periodic polytypes unnoticed.
Moreover, the atomic coordinates of different polytypes
expressed in terms of the respective lattice geometries cannot
be immediately compared. And, finally, for non-periodic
members of a family, a space-group symbol cannot be written
at all. This is why the OD theory gives a special symbol
indicating the symmetry proper of individual layers (4
symmetry) as well as the coincidence operations transforming
a layer into the adjacent one (o symmetry). The symbol of the
OD groupoid family of our hypothetical example thus consists of
two lines (Dornberger-Schiff, 1964, pp. 41 ff.; Fichtner,
1979a,b):

Py m 1
{1 a 1}

where the unusual subscript 2 indicates that the glide reflection
transforms the given layer into the subsequent one.

It is possible to write such a symbol for any OD groupoid
family for equivalent layers, and thus also for the close packing
of spheres. However, keeping in mind that the number of
asymmetric units here is 24 (1 symmetry), one has to indicate
also 24 o operations, which is instructive but unwieldy. This is
why Fichtner (1980) proposed simplified one-line symbols,
containing full 4 symmetry and only the rotational part of any
one of the o operations plus its translational components.
Accordingly, the symbol of our hypothetical family reads:
P(1)m1|1, y = 0.25; for the family of close packings of equal
spheres: P(6/m)mm|1, x =2/3, y = 1/3 (the layers are in both
cases translationally equivalent and the rotational part of a
translation is the identity).

An OD groupoid family symbol should not be confused with a
polytype symbol, which gives information about the structure of
an individual polytype (Dornberger-Schiff, Durovi¢ & Zvyagin,
1982; Guinier et al., 1984).

A symmetry
o syminetry,

9.2.2.2.5. Diffraction pattern - structure analysis

Let us now consider schematic diffraction patterns of the
three structures on the right-hand side of Fig. 9.2.2.2. It can be
seen that, while being in general different, they contain a
common subset of diffractions with k = 2k - these, normalized
to a constant number of layers, have the same distribution of
intensities and monoclinic symmetry. This follows from the fact
that they correspond to the so-called superposition structure
with basis vectors A = 2a,, B =b/2, C = ¢, and space group
Clml. It is a fictitious structure that can be obtained from any
of the structures in Fig. 9.2.2.2 as a normalized sum of the
structure in its given position and in a position shifted by b/2,
thus

p(xyz) = 3[p(xyz) + p(x,y +1/2,2)].

STACKING

Evidently, this holds for all members of the family, including the
non-periodic ones. In general, the superposition structure is
obtained by simultaneous realization of all Z possible positions of
all OD layers in any member of the family (Dornberger-Schiff,
1964, p. 54). As a consequence, its symmetry can be obtained by
completing any of the family groupoids to a group (Fichtner,
1977). This structure is by definition periodic and common to all
members of the family. Thus, the corresponding diffractions are
also always sharp, common, and characteristic for the family.
They are called family diffractions.

Diffractions with k = 2k 4 1 are characteristic for individual
members of the family. They are sharp for periodic polytypes but
appear as diffuse streaks for non-periodic ones. Owing to the C
centring of the superposition structure, only diffractions with
h + k = 2n are present. It follows that Ok/ diffractions are present
only for k = 2n, which, in an indexing referring to the actual b
vector reads: Okl present only for k = 4n. This is an example of
non-space-group absences exhibited by many polytypic struc-
tures. They can be used for the determination of the OD groupoid
family (Dornberger-Schiff & Fichtner, 1972).

There is no routine method for the determination of the
structural principle of an OD structure. It is easiest when one
has at one’s disposal many different (at least two) periodic
polytypes of the same family with structures solved by current
methods. It is then possible to compare these structures,
determine equivalent regions in them (Grell, 1984), and analyse
partial symmetries. This results in an OD interpretation of the
substance and a description of its polytypism.

Sometimes it is possible to arrive at an OD interpretation from
one periodic structure, but this necessitates experience in the
recognition of the partial symmetry and prediction of potential
polytypism (Merlino, Orlandi, Perchiazzi, Basso & Palenzona,
1989).

The determination of the structural principle is complex if
only disordered polytypes occur. Then - as a rule - the
superposition structure is solved first by current methods. The
actual structure of layers and relations between them can then be
determined from the intensity distribution along diffuse streaks
(for more details and references see Jagodzinski, 1964;
Sedlacek, Kuban & Backhaus, 1987; Miiller & Conradi,
1986). High-resolution electron microscopy can also be
successfully applied — see Subsection 9.2.2.4.

9.2.2.2.6. The vicinity condition

A polytype family contains periodic as well as non-periodic
members. The latter are as important as the former, since the
very fact that they can be non-periodic carries important
crystallochemical information. Non-periodic polytypes do not
comply with the classical definition of crystals, but we believe
that this definition should be generalized to include rather
than exclude non-periodic polytypes from the world of
crystals (Dornberger-Schiff & Grell, 1982b). The OD theory
places them, together with the periodic ones, in the hierarchy
of the so-called VC structures. The reason for this is that all
periodic structures, even the non-polytypic ones, can be
thought of as consisting of disjunct, two-dimensionally
periodic slabs, the VC layers, which are stacked together
according to three rules called the vicinity condition (VC)
(Dornberger-Schiff, 1964, pp. 29 ff., 1979; Dornberger-Schiff
& Fichtner, 1972):

(o) VC layers are either geometrically equivalent or, if not,
they are relatively few in kind;

(B) translation groups of all VC layers are either identical or
they have a common subgroup;
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(y) equivalent sides of equivalent layers are faced by
equivalent sides of adjacent layers so that the resulting pairs
are equivalent [for a more detailed specification and explanation
see Dornberger-Schiff (1979)].

If the stacking of VC layers is unambiguous, traditional three-
dimensionally periodic structures result (fully ordered struc-
tures). OD structures are VC structures in which the stacking of
VC layers is ambiguous at every layer boundary (Z > 1). The
corresponding VC layers then become OD layers. OD layers are,
in general, not identical with crystallochemical layers; they may
contain half-atoms at their boundaries. In this context, they are
analogous with unit cells in traditional crystallography, which
may also contain parts of atoms at their boundaries. However,
the choice of OD layers is not absolute: it depends on the
polytypism, either actually observed or reasonably anticipated,
on the degree of symmetry idealization, and other circumstances
(Grell, 1984).

9.2.2.2.7. Categories of OD structures

Any OD layer is two-dimensionally periodic. Thus, a unit
mesh can be chosen according to the conventional rules for the
corresponding layer group; the corresponding vectors or their
linear combinations (Zvyagin & Fichtner, 1986) yield the basis
vectors parallel to the layer plane and thus also their lengths as
units for fractional atomic coordinates. But, in general, there is
no periodicity in the direction perpendicular to the layer plane
and it is thus necessary to define the corresponding unit length in
some other way. This depends on the symmetry principle of the
family in question - or, more narrowly, on the category to which
this family belongs.

OD structures can be built of equivalent layers or contain
layers of several kinds. The rule (y) of the VC implies that a
projection of any OD structure - periodic or not - on the stacking
direction is periodic. This period, called repeat unit, is the
required unit length.

9.2.2.2.7.1. OD structures of equivalent layers

If the OD layers are equivalent then they are either all polar or
all non-polar in the stacking direction. Any two adjacent polar
layers can be related either by t operations only, or by p
operations only. For non-polar layers, the o operations are both
7 and p. Accordingly, there are three categories of OD structures
of equivalent layers. They are shown schematically in Fig.
9.2.2.3; the character of the corresponding 4 and o operations is
as follows (Dornberger-Schiff, 1964, pp. 24 ff.):

a a a
Lo— P s A A
L ?CO Qza_ﬂ D . A;;ﬁ
< ' D\ /A—
Ly P —— B D AT A
LS —e— -ty —v—
L—S— D — D S A— A
-S| I+s —Si_{ i+s —Si_i_J+s
s=al4

& Asymmetric part

(a) (b) (c)

Fig. 9.2.2.3. Schematic examples of the three categories of OD
structures consisting of equivalent layers (perpendicular to the plane
of the drawing): (a) category I - OD layers non-polar in the
stacking direction; (b) category II — polar OD layers, all with the
same sense of polarity; (c) category III - polar OD layers with
regularly alternating sense of polarity. The position of p planes is
indicated.

category I  category Il  category III
A operations Tand p T T
o operations tand p T 0

Category II is the simplest: the OD layers are polar and
all with the same sense of polarity (they are t-equivalent);
our hypothetical example given in §9.2.2.2.4 belongs to this
category. The layers can thus exhibit only one of the 17
polar layer groups. The projection of any vector between two
T-equivalent points in two adjacent layers on the stacking
direction (perpendicular to the layer planes) is the repeat unit
and it is denoted by c,, a,, or b, depending on whether the
basis vectors in the layer plane are ab, be, or ca,
respectively. The choice of origin in the stacking direction
is arbitrary but preferably so that the z coordinates of atoms
within a layer are positive. Examples are SiC, ZnS, and
Agl.

OD layers in category I are non-polar and they can thus
exhibit any of the 63 non-polar layer groups. Inspection of
Fig. 9.2.2.3(a) reveals that the symmetry elements represent-
ing the A-p operations (i.e. the operations turning a layer
upside down) can lie only in one plane called the layer plane.
Similarly, the symmetry elements representing the o-p
operations (i.e. the operations converting a layer into the
adjacent one) also lie in one plane, located exactly halfway
between two nearest layer planes. These two kinds of planes
are called p planes. The distance between two nearest layer
planes is the repeat unit ¢,. Examples are close packing of
equal spheres, GaSe, o-wollastonite (Yamanaka & Mori,
1981), B-wollastonite (Ito, Sadanaga, Takéuchi & Tokonami,
1969), K;[M(CN);] (Jagner, 1985), and many others.

The OD structures belonging to the above two categories
contain pairs of adjacent layers, all equivalent. This does not
apply for structures of category III, which consist of polar
layers that are converted into their neighbours by p
operations. It is evident (Fig. 9.2.2.3¢) that two kinds of
pairs of adjacent layers are needed to build any such structure.
It follows that only even-numbered layers can be mutually
7-equivalent and the same holds for odd-numbered layers.
There are only o—p planes in these structures, and again they

LO -MN—MDN— D——D— —OD—D— —PD—D-
Ly —d—m— A A A A g —
Ly — gy A A A— —D—-
—O0—p—— -
Ly — @ — Ly —ELY
Ly —V— ) MDD —— - - D—D—
Lg—aTh A D —H—D
g —D—@D— —D—@- ol o—o—
(a) (b) () (d)

Fig. 9.2.2.4. Schematic examples of the four categories of OD
structures consisting of more than one kind of layer (perpendicular
to the plane of the drawing). Equivalent OD layers are represented by
equivalent symbolic figures. (a) Category I - three kinds of OD
layers: one kind (L,,s,) is non-polar, the remaining two are polar.
One and only one kind of non-polar layer is possible in this category.
(b) Category II - three kinds of polar OD layers; their triples are polar
and retain their sense of polarity in the stacking direction. (c)
Category III - three kinds of polar OD layers; their triples are polar
and regularly change their sense of polarity in the stacking direction.
(d) Category IV - three kinds of OD layers: two kinds are non-polar
(L 4, and Ly 4,), one kind is polar. Two and only two kinds of non-
polar layers are possible in this category. The position of p planes is
indicated.
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9.2. LAYER STACKING

are of two kinds; the origin can be placed in either of them.
¢y is the distance between two nearest p planes of the same
kind, and slabs of this thickness contain two OD layers. There
are three examples for this category known to date: foshagite
(Gard & Taylor, 1960), y-Hg;S,Cl, (Durovi¢, 1968), and
2,2-aziridinedicarboxamide (Fichtner & Grell, 1984).

9.2.2.2.7.2. OD structures with more than one kind of layer

If an OD structure consists of N > 1 kinds of OD layers, then
it can be shown (Dornberger-Schiff, 1964, pp. 64 ff.) that it can
fall into one of four categories, according to the polarity or non-
polarity of its constituent layers and their sequence. These are
shown schematically in Fig. 9.2.2.4; the character of the
corresponding 4 and o operations is

category I

) ) 7 and p (one set)
A operations T (N — 1 sets)

o operations p (one set)

Here also category II is the simplest. The structures consist of
N kinds of cyclically recurring polar layers whose sense of
polarity remains unchanged (Fig. 9.2.2.4b). The choice of origin
in the stacking direction is arbitrary; c, is the projection on this
direction of the shortest vector between two r-equivalent points -
a slab of this thickness contains all N OD layers of different
kinds. Examples are the structures of the serpentine-kaolin
group.

Structures of category III also consist of polar layers but, in
contrast to category II, the N-tuples containing all N different OD
layers each alternate regularly the sense of their polarity in the
stacking direction. Accordingly (Fig. 9.2.2.4c), there are two
kinds of o—p planes and two kinds of pairs of equivalent adjacent
layers in these structures. The origin can be placed in either of
the two p planes. ¢, is the distance between the nearest two
equivalent p planes; a slab with this thickness contains 2 x N
non-equivalent OD layers. No representative of this category is
known to date.

The structures of category I contain one, and only one,
kind of non-polar layer, the remaining N — 1 kinds are polar
and alternate in their sense of polarity along the stacking
direction (Fig. 9.2.2.4a). Again, there are two kinds of p
planes here, but one is a A-p plane (the layer plane of the
non-polar OD layer), the other is a o-p plane. These
structures thus contain only one kind of pair of equivalent
adjacent layers. The origin is placed in the A-p plane. ¢, is
the distance between the nearest two equivalent p planes and
a slab with this thickness contains 2 x (N —1) non-
equivalent polar OD layers plus one entire non-polar
layer. Examples are the MX, compounds (Cdl,, MoS,,
etc.) and the talc-pyrophyllite group.

The structures of category IV contain two, and only two, kinds
of non-polar layers. The remaining N — 2 kinds are polar and
alternate in their sense of polarity along the stacking direction
(Fig. 9.2.2.44d). Both kinds of p planes are A-p planes, identical
with the layer planes of the non-polar OD layers; the origin can
be placed in any one of them. ¢, is chosen as in categories I and
III. A slab with this thickness contains 2 x (N —2) non-
equivalent polar layers plus the two non-polar layers. Examples
are micas, chlorites, vermiculites, efc.

OD structures containing N > 1 kinds of layers need special
symbols for their OD groupoid families (Grell & Dornberger-
Schiff, 1982).

category II

T (N sets)

none

A slab of thickness ¢, containing the N non-equivalent polar
OD layers in the sequence as they appear in a given structure
of category II represents completely its composition. In the
remaining three categories, a slab with thickness c,/2, the
polar part of the structure contained between two adjacent p
planes, suffices. Such slabs are higher structural units for OD
structures of more than one kind of layer and have been called
OD packets. An OD packet is thus defined as the smallest
continuous part of an OD structure that is periodic in two
dimensions and which represents its composition completely
(Durovic, 1974a).

The hierarchy of VC
9.2.2.5.

structures is shown in Fig.

category III category IV
T and p (two sets)
T (IV sets) T (N — 2 sets)

0 (two sets) none.

9.2.2.2.8. Desymmetrization of OD structures

If a fully ordered structure is refined, using the space group
determined from the systematic absences in its diffraction pattern
and then by using some of its subgroups, serious discrepancies
are only rarely encountered. Space groups thus characterize the
general symmetry pattern quite well, even in real crystals.
However, experience with refined periodic polytypic structures
has revealed that there are always significant deviations from the
OD symmetry and, moreover, even the atomic coordinates
within OD layers in different polytypes of the same family may
differ from one another. The OD symmetry thus appears as only
an approximation to the actual symmetry pattern of polytypes.
This phenomenon was called desymmetrization of OD structures
(Durovic, 1974b, 1979).

When trying to understand this phenomenon, let us recall the
structure of rock salt. Its symmetry Fm3m is an expression of the
energetically most favourable relative position of Nat and CI~
ions in this structure - the right angles a8y follow from the
symmetry. Since the whole structure is cubic, we cannot expect
that the environment of any building unit, e.g. of any octahedron
NaClg, would exercise on it an influence that would decrease its
symmetry; the symmetries of these units and of the whole
structure are not ‘antagonistic’.

B VC structures |
I I
Fully ordered 1 OD structures J
structures [ [ .
of equivalent of N > 1 kinds
7 crystal systems layers of layers
32 point groups 3 cateqories 4 categories
230 space groups 400 OD grou oid unlimited number
famsiglies P of OD groupoid
families

1 |

— I
[Periodic (ordered)|

1
Non-periodic
(disordered)

] [
| MDO | |Higher|

Fig. 9.2.2.5. Hierarchy of VC structures indicating the position of OD
structures within it.
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9. BASIC STRUCTURAL FEATURES

Not so in OD structures, where any OD layer is by definition
situated in a disturbing environment because its symmetry does
not conform to that of the entire structure. °‘Antagonistic’
relations between these symmetries are most drastic in pure
MDO structures because of the regular sequence of layers. The
partial symmetry operations become irrelevant and the OD
groupoid degenerates into the corresponding space group.

The more disordered an OD structure is, the smaller become
the disturbing effects that the environment exercises on an OD
layer. These can be, at least statistically, neutralized by random
positions of neighbouring layers so that partial symmetry
operations can retain their relevance throughout the structure.
This can be expressed in the form of a paradox: the less periodic
an OD structure is, the more symmetric it appears.

Despite desymmetrization, the OD theory remains a geo-
metrical theory that can handle properly the general symmetry
pattern of polytypes (which group theory cannot). It establishes a
symmetry norm with which deviations observed in real polytypes
can be compared. Owing to the high abstraction power of OD
considerations, systematics of entire families of polytypes at
various degree-of-idealization levels can be worked out, yielding
thus a common point of view for their treatment.

9.2.2.2.9. Concluding remarks

Although very general physical principles (OD philosophy,
MDO philosophy) underlie the OD theory, it is mainly a
geometrical theory, suitable for a description of the symmetry of
polytypes and their families rather than for an explanation of
polytypism. It thus does not compete with crystal chemistry, but
cooperates with it, in analogy with traditional crystallography,
where group theory does not compete with crystal chemistry.

When speaking of polytypes, one should always be aware,
whether one has in mind a concrete real polytype — more or less
in Baumhauer’s sense — or an abstract polytype as a structural
type (Subsection 9.2.2.1).

A substance can, in general, exist in the form of various
polymorphs and/or polytypes of one or several families. Since
polytypes of the same family differ only slightly in their crystal
energy (Verma & Krishna, 1966), an entire family can be
considered as an energetic analogue to one polymorph. As a rule,
polytypes belonging to different families of the same substance
do not co-exist. AI(OH); may serve as an example for two
different families: the bayerite family, in which the adjacent
planes of OH groups are stacked according to the principle of
close packing (Zvyagin et al., 1979), and the gibbsite-
nordstrandite family in which these groups coincide in the
normal projection.* Another example is the phyllosilicates
(§9.2.2.3.1). The compound Hg;S,Cl,, on the other hand, is
known to yield two polymorphs « and 8 (Carlson, 1967; Frueh &
Gray, 1968) and one OD family of y structures (Durovic, 1968).

As far as the definition of layer polytypism is concerned, OD
theory can contribute specifications about the layers themselves
and the geometrical rules for their stacking within a family (all
incorporated in the vicinity condition). A possible definition
might then read:

Polytypism is a special case of polymorphism, such that the
individual polymorphs (called polytypes) may be regarded as
arising through different modes of stacking layer-like structural

* Sandwiches with composition AI(OH); (similar to those in Cdl,) are the same in
both families, but their stacking mode is different. This and similar situations in
other substances might have been the reason for distinguishing between ‘polytype
diversity’ and ‘OD diversity’ (Zvyagin, 1988).

units. The layers and their stackings are limited by the vicinity
condition. All polytypes built on the same structural principle
belong to a family; this depends on the degree of a structural
and/or compositional idealization.

Geometrical theories concerning rod and block polytypism
have not yet been elaborated, the main reason is the difficulty of
formulating properly the vicinity condition (Sedlacek, Grell &
Dornberger-Schiff, private communications). But such struc-
tures are known. Examples are the structures of tobermorite
(Hamid, 1981) and of manganese(IIl) hydrogenbis(orthophos-
phite) dihydrate (Cisafova, Novak & Petficek, 1982). Both
structures can be thought of as consisting of a three-dimensionally
periodic framework of certain atoms into which one-dimension-
ally periodic chains and aperiodic finite configurations of the
remaining atoms, respectively, ‘fit’ in two equivalent ways.

9.2.2.3. Examples of some polytypic structures

The three examples below illustrate the three main methods of
analysis of polytypism indicated in §9.2.2.2.5.

9.2.2.3.1. Hydrous phyllosilicates

The basic concepts were introduced by Pauling (1930a,b) and
confirmed later by the determination of concrete crystal
structures. A crystallochemical analysis of these became the
basis for generalizations and systemizations. The aim was the
understanding of geometrical reasons for the polytypism of these
substances as well as the development of identification routines
through the derivation of basic polytypes (§9.2.2.2.3). Smith &
Yoder (1956) succeeded first in deriving the six basic polytypes
in the mica family.

Since the 1950’s, two main schools have developed: in the
USA, represented mainly by Brindley, Bailey, and their co-
workers (for details and references see Bailey, 1980, 1988a;
Brindley, 1980), and in the former USSR, represented by
Zvyagin and his co-workers (for details and references see
Zvyagin, 1964, 1967; Zvyagin et al., 1979). Both these schools
based their systemizations on idealized structural models
corresponding to the ideas of Pauling, with hexagonal symmetry
of tetrahedral sheets (see later). The US school uses indicative
symbols (Guinier et al., 1984) for the designation of individual
polytypes, and single-crystal as well as powder X-ray diffraction
methods for their identification, whereas the USSR school uses
unitary descriptive symbols for polytypes of all mineral groups
and mainly electron diffraction on oblique textures for
identification purposes. For the derivation of basic polytypes,
both schools use crystallochemical considerations; symmetry
principles are applied tacitly rather than explicitly.

In contrast to crystal structures based on close packings,
where all relevant details of individual (even multilayer)
polytypes can be recognized in the (1120) section, the structures
of hydrous phyllosilicates are rather complex. For their
representation, Figueiredo (1979) used the concept of condensed
models.

Since 1970, the OD school has also made its contribution. In
a series of articles, basic types of hydrous phyllosilicates have
been interpreted as OD structures of N > 1 kinds of layers: the
serpentine-kaolin  group (Dornberger-Schiff & Durovic,
1975a,b), Mg-vermiculite (Weiss & Durovi¢, 1980), the mica
group (Dornberger-Schiff, Backhaus & Durovié, 1982;
Backhaus & Durovic, 1984; Durovi¢, Weiss & Backhaus,
1984; Weiss & Wiewiora, 1986), the talc-pyrophyllite group
(Durovic & Weigs, 1983; Weiss & Durovic, 1985a), and the
chlorite group (Durovi¢, Dornberger-Schiff & Weiss, 1983;
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