International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 9.3, pp. 774-777
https://doi.org/10.1107/97809553602060000619

Chapter 9.3. Typical interatomic distances: metals and alloys

J. L. C. Daams,a J. R. Rodgersb and P. Villarsc

a Materials Analysis Department, Philips Research Laboratories, Prof. Holstaan 4, 5656 AA Eindhoven, The Netherlands,bNational Research Council of Canada, Canada Institute for Scientific and Technical Information, Ottawa, Canada K1A 0S2, and cIntermetallic Phases Databank, Postal Box 1, CH-6354 Vitznau, Switzerland

References

First citation Brunner, G. O. & Schwarzenbach, D. (1971). Zur Abgrenzung der Koordinationsphäre und Ermittlung det Koordinationszahl in Kristallstrukturen. Z. Kristallogr. 133, 127–133.Google Scholar
First citation Daams, J. L. C. (1995). Atomic environments in some related intermetallic structure types. Intermetallic compounds, principles and practice, edited by J. H. Westbrook & R. L. Fleischer, Vol. 1, pp. 363–383. New York: John Wiley.Google Scholar
First citation Daams, J. L. C. & Villars, P (1993). Atomic-environment classification of the rhombohedral ``intermetallic'' structure types. J. Alloys Compd. 197, 243–269.Google Scholar
First citation Daams, J. L. C. & Villars, P. (1994). Atomic-environment classification of the hexagonal ``intermetallic'' structure types. J. Alloys Compd. 215, 1–34.Google Scholar
First citation Daams, J. L. C. & Villars, P. (1997). Atomic environment classification of the tetragonal ``intermetallic'' structure types. J. Alloys Compd. 252, 110–142.Google Scholar
First citation Daams, J. L. C., Villars, P. & van Vucht, J. H. N. (1991). Atlas of crystal structure types for intermetallic phases. Materials Park, OH: ASM International.Google Scholar
First citation Daams, J. L. C., Villars, P. & van Vucht, J. H. N. (1992). Atomic-environment classification of the cubic ``intermetallic'' structure types. J. Alloys Compd. 182, 1–33.Google Scholar
First citation Kordes, E. (1939a). Die Ermittlung von Atomabständen aus der Lichtbrechnung. I. Mitteilung. Über eine einfache Beziehung zwischen Ionenrefraktion, Ionenradius und Ordnungszahl der Elemente. Z. Phys. Chem. B, 44, 249–260.Google Scholar
First citation Kordes, E. (1939b). Die Ermittlung von Atomabständen aus der Lichtbrechnung. II. Mitteilung. Z. Phys. Chem. B, 44, 327–343.Google Scholar
First citation Kordes, E. (1940). Ionenradien und periodisches System. II. Mitteilung. Berechnung der Ionenradien mit Hilfe atomphysicher Grössen. Z. Phys. Chem. 48, 91–107.Google Scholar
First citation Kordes, E. (1960). Direkte Berechnung der Ionenradien allein aus den Ionen-abständen. Naturwissenschaften, 47, 463.Google Scholar
First citation Pauling, L. (1947). The nature of the interatomic forces in metals. II. Atomic radii and interatomic distances in metals. J. Am. Chem Soc. 69, 542–553.Google Scholar
First citation Pearson, W. B. (1979). The stability of metallic phases and structures: phases with the AlB2 and related structures. Proc. R. Soc. London Ser. A, 365, 523–535.Google Scholar
First citation Rodgers, J. R. & Villars, P. (1988). Computer evaluation of crystallographic data. In Proceedings of the 11th International CODATA Conference, Karlsruhe, FRG, edited by P. S. Glaeser. New York: Hemisphere Publishing Corp.Google Scholar
First citation Samsonov, G. V. (1968). Editor. Handbook of physicochemical properties of elements, p. 98. New York/Washington: IFI/Plenum Data Corporation.Google Scholar
First citation Teatum, E. T., Gschneider, K. Jr & Waber, J. T. (1960). Compilation of calculated data useful in predicting metallurgical behaviour of the elements in binary alloy systems. USAEC Report LA-2345, 225 pp. Washington, DC: United States Atomic Energy Commission.Google Scholar
First citation Teatum, E. T., Gschneider, K. Jr & Waber, J. T. (1968). Compilation of calculated data useful in predicting metallurgical behaviour of the elements in binary alloy systems. USAEC Report LA-4003, 206 pp. [Supercedes Report LA-2345 (1960).] Washington, DC: United States Atomic Energy Commission.Google Scholar
First citation Villars, P. & Calvert, L. D. (1991). Pearson's handbook of crystallographic data for intermetallic phases, 2nd ed. Materials Park, OH: ASM International.Google Scholar
First citation Villars, P. & Girgis, K. (1982). Regelmässigkeiten in binären intermetallischen Verbindungen. Z. Metallkd. 73, 455–462.Google Scholar