International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 9.5, pp. 790-811
https://doi.org/10.1107/97809553602060000621

Chapter 9.5. Typical interatomic distances: organic compounds

F. H. Allen,a D. G. Watson,a L. Brammer,b A. G. Orpenc and R. Taylora

a Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England,bDepartment of Chemistry, University of Missouri–St Louis, 8001 Natural Bridge Road, St Louis, MO 63121-4499, USA, and cSchool of Chemistry, University of Bristol, Bristol BS8 1TS, England

Mean bond lengths for organic compounds, derived from the Cambridge Structural Database, are tabulated for 625 different bond types involving the elements C, H, N, O, B, F, P, S, Cl, As, Se, Br, Te and I. Associated statistical information characterizes each of the distributions, which are derived from both X-ray and neutron diffraction data.

Keywords: basic structural features; bonds; interatomic distances; organic compounds.

9.5.1. Introduction

| top | pdf |

The determination of molecular geometry is of vital importance to our understanding of chemical structure and bonding. The majority of experimental data have come from X-ray and neutron diffraction, microwave spectroscopy, and electron diffraction. Over the years, compilations of results from these techniques have appeared sporadically. The first major compilation was Chemical Society Special Publication No. 11: Tables of Interatomic Distances and Configuration in Molecules and Ions (Sutton, 1958[link]). This volume summarized results obtained by diffraction and spectroscopic methods prior to 1956; a supplementary volume (Sutton, 1965[link]) extended this coverage to 1959. Summary tables of bond lengths between carbon and other elements were also published in Volume III of International Tables for X-ray Crystallography (Kennard, 1962[link]). Some years later, the Cambridge Crystallographic Data Centre (Allen, Bellard, Brice, Cartwright, Doubleday, Higgs, Hummelink, Hummelink-Peters, Kennard, Motherwell, Rodgers & Watson, 1979[link]) produced an atlas-style compendium of all organic, organometallic and metal-complex crystal structures published in the period 1960–1965 (Kennard, Watson, Allen, Isaacs, Motherwell, Pettersen & Town, 1972[link]). More recently, a survey of geometries determined by spectroscopic methods (Harmony, Laurie, Kuczkowski, Schwendemann, Ramsay, Lovas, Lafferty & Maki, 1979[link]) has extended coverage in this area to mid-1977.

The production of further comprehensive compendia of X-ray and neutron diffraction results has been precluded by the steep rise in the number of published crystal structures, as illustrated by Fig. 9.5.1.1[link]. Printed compilations have been effectively superseded by computerized databases. In particular, the Cambridge Structural Database now (1991) contains bibliographic, chemical, and numerical results for some 86 000 organo-carbon crystal structures. This machine-readable file fulfils the function of a comprehensive structure-by-structure compendium of molecular geometries. However, the amount of data now held in the CSD is so large that there is also a need for concise, printed tabulations of average molecular dimensions.

[Figure 9.5.1.1]

Figure 9.5.1.1| top | pdf |

Growth of the Cambridge Structural Database 1965–1985 as number of entries (Nent) published in a given year.

The only tables of average geometry in general use are those contained in Sutton (1958[link], 1965[link]) which list mean bond lengths for a variety of atom pairs and functional groups. Since these early tables were based on data obtained before 1960, we have used the CSD to prepare a new table of average bond lengths in organic compounds. Table 9.5.1.1[link] given here specifically lists average lengths for bonds involving the elements H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, and I. Mean values are presented for 682 different bond types involving these elements.

Table 9.5.1.1 | top | pdf |
Average lengths (Å) for bonds involving the elements H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, and I

Bond Substructure d m σ q l q u n Note
As(3)—As(3) X 2 AsAsX2 2.459 2.457 0.011 2.456 2.466 8  
As—B see CUDLOC (2.065), CUDLUI (2.041)              
As—Br see CODDEE, CODDII (2.346–3.203)              
As(4)—C X 3 AsCH3 1.903 1.907 0.016 1.893 1.916 12  
(X)2(C, O, S=)AsCsp3 1.927 1.929 0.017 1.921 1.937 16
As Car in Ph4As+ 1.905 1.909 0.012 1.897 1.912 108
(X)2(C, O, S=)AsCar 1.922 1.927 0.016 1.908 1.934 36
As(3)—C X 2 AsCsp3 1.963 1.965 0.017 1.948 1.978 6  
X 2 AsCar 1.956 1.956 0.015 1.944 1.964 41  
As(3)—Cl X 2 AsCl 2.268 2.256 0.039 2.247 2.281 10  
As(6)—F in [{\bf AsF}^-_6] 1.678 1.676 0.020 1.659 1.695 36  
As(3)—I see OPIMAS (2.579, 2.590)              
As(3)—N(3) X 2 AsNX2 1.858 1.858 0.029 1.839 1.873 19  
As(4)=N(2) see TPASSN (1.837)              
As(4)—O (X)2(O=)AsOH 1.710 1.712 0.017 1.695 1.726 6  
As(3)—O see ASAZOC, PHASOC01 (1.787–1.845)              
As(4)=O X 3 As=O 1.661 1.661 0.016 1.652 1.667 9  
As(3)—P(3) see BELNIP (2.350, 2.362)            
As(3)=P(3) see BUTHAZ10 (2.124)            
As(3)—S X 2 AsS 2.275 2.266 0.032 2.247 2.298 14  
As(4)=S X 3 As=S 2.083 2.082 0.004 2.080 2.086 9  
As(3)—Se(2) see COSDIX, ESEARS (2.355–2.401)            
As(3)—Si(4) see BICGEZ, MESIAD (2.351–2.365)            
As(3)—Te(2) see ETEARS (2.571, 2.576)            
B(n)—B(n) n = 5–7 in boron cages 1.775 1.773 0.031 1.763 1.786 688  
B(4)—B(4) see CETTAW (2.041)              
B(4)—B(3) see COFVOI (1.698)              
B(3)—B(3) X 2 BBX2 1.701 1.700 0.014 1.691 1.712 8  
B(6)—Br   1.967 1.971 0.014 1.954 1.979 7
B(4)—Br   2.017 2.008 0.031 1.990 2.044 15
B(n)—C n = 5–7: BC in cages 1.716 1.717 0.020 1.707 1.728 96  
n = 3–4: BCsp3 not cages 1.597 1.599 0.022 1.585 1.611 29 1
n = 4: BCar 1.606 1.607 0.012 1.596 1.615 41  
n = 4: BCar in Ph4B 1.643 1.643 0.006 1.641 1.645 16  
n = 3: BCar 1.556 1.552 0.015 1.546 1.566 24  
B(n)—Cl B (5)—Cl and B(3)—Cl 1.751 1.751 0.011 1.743 1.761 14  
B (4)—Cl 1.833 1.833 0.013 1.821 1.843 22  
B(4)—F B F (B neutral) 1.366 1.368 0.017 1.356 1.375 25  
B F in [{\rm BF}^-_4] 1.365 1.372 0.029 1.352 1.390 84  
B(4)—I see TMPBTI (2.220, 2.253)              
B(4)—N(3) X 3 BN(=C)(X) 1.611 1.617 0.013 1.601 1.625 8  
in pyrazaboles 1.549 1.552 0.015 1.536 1.560 10  
B(3)—N(3) X 2 BN—C2: all coplanar 1.404 1.404 0.014 1.389 1.408 40 2
for τ(BN) > 30° see BOGSUL, BUSHAY, CILRUK (1.434–1.530)              
S2BNX2 1.447 1.443 0.013 1.435 1.470 14  
B(4)—O B O in [{\rm BO}^-_4] 1.468 1.468 0.022 1.453 1.479 24  
for neutral BO see Note 3             3
B(3)—O(2) X 2 BOX 1.367 1.367 0.024 1.349 1.382 35  
B(n)—P n = 4: BP 1.922 1.927 0.027 1.900 1.954 10  
n = 3: see BUPSIB10 (1.892, 1.893)              
B(4)—S B (4)—S(3) 1.930 1.927 0.009 1.925 1.934 10  
B (4)—S(2) 1.896 1.896 0.004 1.893 1.899 6  
B(3)—S N—BS2 1.806 1.806 0.010 1.799 1.816 28  
(=X—)(N—)BS 1.851 1.854 0.013 1.842 1.859 10  
Br—Br see BEPZEB, TPASTB 2.542 2.548 0.015 2.526 2.551 4  
Br—C Br C* 1.966 1.967 0.029 1.951 1.983 100 4
Br Csp3 (cyclopropane) 1.910 1.910 0.010 1.900 1.914 8  
Br Csp2 1.883 1.881 0.015 1.874 1.894 31 4
Br Car (mono-Br + m,p-Br2) 1.899 1.899 0.012 1.892 1.906 119 4
Br Car (o-Br2) 1.875 1.872 0.011 1.864 1.884 8 4
Br(2)—Cl see TEACBR (2.362–2.402)            
Br—I see DTHIBR10 (2.646), TPHOSI (2.695)              
Br—N see NBBZAM (1.843)              
Br—O see CIYFOF 1.581 1.581 0.007 1.574 1.587 4  
Br—P see CISTED (2.366)              
Br—S(2) see BEMLIO (2.206)            
Br—S(3) see CIWYIQ (2.435, 2.453)            
Br—S(3)+ see THINBR (2.321)            
Br—Se see CIFZUM (2.508, 2.619)              
Br—Si see BIZJAV (2.284)              
Br—Te In Br6Te2−see CUGBAH (2.692–2.716)              
Br Te(4) see BETUTE10 (3.079, 3.015)              
Br Te(3) see BTUPTE (2.835)              
Csp3—Csp3 C#CH2CH3 1.513 1.514 0.014 1.507 1.523 192  
(C#)2CH—CH3 1.524 1.526 0.015 1.518 1.534 226  
(C#)3CCH3 1.534 1.534 0.011 1.527 1.541 825  
C#CH2CH2—C# 1.524 1.524 0.014 1.516 1.532 2459  
(C#)2CH—CH2—C# 1.531 1.531 0.012 1.524 1.538 1217  
(C#)3CCH2—C# 1.538 1.539 0.010 1.533 1.544 330  
(C#)2CH—CH—(C#)2 1.542 1.542 0.011 1.536 1.549 321  
(C#)3CCH—(C#)2 1.556 1.556 0.011 1.549 1.562 215  
(C#)3CC—(C#)3 1.588 1.580 0.025 1.566 1.610 21  
C* C* (overall) 1.530 1.530 0.015 1.521 1.539 5777 5, 6
in cyclopropane (any substituent) 1.510 1.509 0.026 1.497 1.523 888 7
in cyclobutane (any substituent) 1.554 1.553 0.021 1.540 1.567 679 8
in cyclopentane (C,H substituents) 1.543 1.543 0.018 1.532 1.554 1641  
in cyclohexane (C,H substituents) 1.535 1.535 0.016 1.525 1.545 2814  
cyclopropyl—C* (exocyclic) 1.518 1.518 0.019 1.505 1.531 366 7
cyclobutyl—C* (exocyclic) 1.529 1.529 0.016 1.519 1.539 376 8
cyclopentyl—C* (exocyclic) 1.540 1.541 0.017 1.527 1.549 956  
cyclohexyl—C* (exocyclic) 1.539 1.538 0.016 1.529 1.549 2682  
in cyclobutene (any substituent) 1.573 1.574 0.017 1.566 1.586 25 8
in cyclopentene (C,H substituents) 1.541 1.539 0.015 1.532 1.549 208  
in cyclohexene (C,H substituents) 1.541 1.541 0.020 1.528 1.554 586  
in oxirane (epoxide) 1.466 1.466 0.015 1.458 1.474 249 9
in aziridine 1.480 1.481 0.021 1.465 1.496 67 9
in oxetane 1.541 1.541 0.019 1.527 1.557 16  
in azetidine 1.548 1.543 0.018 1.536 1.558 22  
oxiranyl—C* (exocyclic) 1.509 1.507 0.018 1.497 1.519 333 9
aziridinyl—C* (exocyclic) 1.512 1.512 0.018 1.496 1.526 13 9
Csp3—Csp2 C H3C=C 1.503 1.504 0.011 1.497 1.509 215  
C#CH2C=C 1.502 1.502 0.013 1.494 1.510 483  
(C#)2CH—C=C 1.510 1.510 0.014 1.501 1.518 564  
(C#)3CC=C 1.522 1.522 0.016 1.511 1.533 193  
C *—C=C (overall) 1.507 1.507 0.015 1.499 1.517 1456 5
C *—C=C (endocylic):              
 in cyclopropene 1.509 1.508 0.016 1.500 1.516 20 10
 in cyclobutene 1.513 1.512 0.018 1.500 1.525 50 8
 in cyclopentene 1.512 1.512 0.014 1.502 1.521 208  
 in cyclohexene 1.506 1.505 0.016 1.495 1.516 391  
 in cyclopentadiene 1.502 1.503 0.019 1.490 1.515 18  
 in cyclohexa-1,3-diene 1.504 1.504 0.017 1.491 1.517 56  
C* C≡C (exocyclic):              
 cyclopropenyl—C* 1.478 1.475 0.012 1.470 1.485 7 10
 cyclobutenyl—C* 1.489 1.483 0.015 1.479 1.496 11 8
 cyclopentenyl—C* 1.504 1.506 0.012 1.495 1.512 115  
 cyclohexenyl—C* 1.511 1.511 0.013 1.502 1.519 292  
C* CH=O in aldehydes 1.510 1.510 0.008 1.501 1.518 7  
(C*)2C=O in ketones 1.511 1.511 0.015 1.501 1.521 952 11
(C*)2C=O in cyclobutanone 1.529 1.530 0.016 1.514 1.545 18  
(C*)2C=O in cyclopentanone 1.514 1.514 0.016 1.505 1.523 312  
(C*)2C=O acyclic and 6+ rings 1.509 1.509 0.016 1.499 1.519 626  
C *—COOH in carboxylic acids 1.502 1.502 0.014 1.495 1.510 176  
C *—COO in carboxylate anions 1.520 1.521 0.011 1.516 1.528 57  
C *—C(=O)(—OC*) in acyclic esters 1.497 1.496 0.018 1.484 1.509 553 12
C *—C(=O)(—OC*) in β-lactones 1.519 1.519 0.020 1.500 1.538 4 13
C *—C(=O)(—OC*) in γ-lactones 1.512 1.512 0.015 1.501 1.521 110 12
C *—C(=O)(—OC*) in δ-lactones 1.504 1.502 0.013 1.495 1.517 27 12
cyclopropyl (C)—C=O in ketones, acids, and esters 1.486 1.485 0.018 1.474 1.497 105 7
C* C(=O)(—NH2) in acyclic amides 1.514 1.512 0.016 1.506 1.526 32 14
C* C(=O)(—NHC*) in acyclic amides 1.506 1.505 0.012 1.498 1.515 78 14
C* C(=O)[—N(C*)2] in acyclic amides 1.505 1.505 0.011 1.496 1.517 15 14
Csp3—Car C H3Car 1.506 1.507 0.011 1.501 1.513 454  
C#CH2Car 1.510 1.510 0.009 1.505 1.516 674  
(C#)2CCar 1.515 1.515 0.011 1.508 1.522 363  
(C#)3CCar 1.527 1.530 0.016 1.517 1.539 308  
C* Car (overall) 1.513 1.513 0.014 1.505 1.521 1813  
cyclopropyl (C)—Car 1.490 1.490 0.015 1.479 1.503 90 7
Csp3—Csp1 C *—C≡C 1.466 1.465 0.010 1.460 1.469 21 15
C # C≡C 1.472 1.472 0.012 1.464 1.481 88 15
C *—C≡N 1.470 1.469 0.013 1.463 1.479 106 7(b)
cyclopropyl (C)—C≡N 1.444 1.447 0.010 1.436 1.451 38 7
Csp2—Csp2 C=CC=C (conjugated) 1.455 1.455 0.011 1.447 1.463 30 16, 18
C=CC=C (unconjugated) 1.478 1.476 0.012 1.470 1.479 8 17, 18
C=CC=C (overall) 1.460 1.460 0.015 1.450 1.470 38  
C=CC=CC=C 1.443 1.445 0.013 1.431 1.454 29 18
C=CC=C (endocyclic in TCNQ) 1.432 1.433 0.012 1.424 1.441 280 19
C=CC(=O)(—C*) (conjugated) 1.464 1.462 0.018 1.453 1.476 211 16, 18
C=CC(=O)(—C*) (unconjugated) 1.484 1.486 0.017 1.475 1.497 14 17, 18
C=CC(=O)(—C*) (overall) 1.465 1.462 0.018 1.453 1.478 226  
C=CC(=O)—C=C:              
 in benzoquinone (C,H substituents only) 1.478 1.476 0.011 1.469 1.488 28  
 in benzoquinone (any substituent) 1.478 1.478 0.031 1.464 1.498 172  
 non-quinonoid 1.456 1.455 0.012 1.447 1.464 28  
C—CCOOH 1.475 1.476 0.015 1.461 1.488 22  
C=CCOOC* 1.488 1.489 0.014 1.478 1.497 113  
C=CCOO 1.502 1.499 0.017 1.488 1.510 11  
HOOCCOOH 1.538 1.537 0.007 1.535 1.541 9  
HOOCCOO 1.549 1.552 0.009 1.546 1.553 13  
OOCCOO 1.564 1.559 0.022 1.554 1.568 9  
formal Csp2—Csp2 single bond in selected, non-fused heterocycles:              
 in 1H-pyrrole  (C3—C4) 1.412 1.410 0.016 1.401 1.427 29  
 in furan  (C3—C4) 1.423 1.423 0.016 1.412 1.433 62  
 in thiophene  (C3—C4) 1.424 1.425 0.015 1.415 1.433 40  
 in pyrazole  (C3—C4) 1.410 1.412 0.016 1.400 1.418 20  
 in isoxazole  (C3—C4) 1.425 1.425 0.016 1.413 1.438 9  
 in furazan  (C3—C4) 1.428 1.427 0.007 1.422 1.435 6  
 in furoxan  (C3—C4) 1.417 1.417 0.006 1.412 1.422 14  
Csp2—Car C=CCar  (conjugated) 1.470 1.470 0.015 1.463 1.480 37 16, 18
C=CCar  (unconjugated) 1.488 1.490 0.012 1.480 1.496 87 17, 18
C=CCar  (overall) 1.483 1.483 0.015 1.472 1.494 124  
cyclopropenyl (C=C)—Car 1.447 1.448 0.006 1.441 1.452 8 10
C ar C(=O)—C* 1.488 1.489 0.016 1.478 1.500 84  
C ar C(=O)—Car 1.480 1.481 0.017 1.468 1.494 58  
C ar COOH 1.484 1.485 0.014 1.474 1.491 75  
C ar C(=O)(—OC*) 1.487 1.487 0.012 1.480 1.494 218  
C ar COO 1.504 1.509 0.014 1.495 1.512 26  
C ar C(=O)—NH2 1.500 1.503 0.020 1.498 1.510 19  
C ar C=N—C#  (conjugated) 1.476 1.478 0.014 1.466 1.486 27 16
C ar C=N—C# (unconjugated) 1.491 1.490 0.008 1.485 1.496 48 17
C ar C=N—C# (overall) 1.485 1.487 0.013 1.481 1.493 75  
in indole (C3—C3a) 1.434 1.434 0.011 1.428 1.439 40  
Csp2—Csp1 C=CC≡C 1.431 1.427 0.014 1.425 1.441 11 7(b)
C=CC≡N in TCNQ 1.427 1.427 0.010 1.420 1.433 280 19
Car—Car in biphenyls (ortho substituent all H) 1.487 1.488 0.007 1.484 1.493 30  
 ([\ge 1] non-H ortho substituent) 1.490 1.491 0.010 1.486 1.495 212  
Car—Csp1 C ar C≡C 1.434 1.436 0.006 1.430 1.437 37  
C ar C≡N 1.443 1.444 0.008 1.436 1.448 31  
Csp1—Csp1 C≡CC≡C 1.377 1.378 0.012 1.374 1.384 21  
Csp2=Csp2 C*—CH=CH2 1.299 1.300 0.027 1.280 1.311 42  
(C*)2C=CH2 1.321 1.321 0.013 1.313 1.328 77  
C*—CH=CH—C* (cis) 1.317 1.318 0.013 1.310 1.323 106  
C*—CH=CH—C* (trans) 1.312 1.311 0.011 1.304 1.320 19  
C*—CH=CH—C* (overall) 1.316 1.317 0.015 1.309 1.323 127  
(C*)2C=CH—C* 1.326 1.328 0.011 1.319 1.334 168  
(C*)2C=C—(C*)2 1.331 1.330 0.009 1.326 1.334 89  
(C*,H)2C=C—(C*,H)2 (overall) 1.322 1.323 0.014 1.315 1.331 493 5
in cyclopropene (any substituent) 1.294 1.288 0.017 1.284 1.302 10 10
in cyclobutene (any substituent) 1.335 1.335 0.019 1.324 1.347 25 8
in cyclopentene (C,H substituents) 1.323 1.324 0.013 1.314 1.331 104  
in cyclohexene (C,H substituents) 1.326 1.325 0.012 1.318 1.334 196  
C =C=C (allenes, any substituents) 1.307 1.307 0.005 1.303 1.310 18  
C =CC=C (C,H substituents, conjugated) 1.330 1.330 0.014 1.322 1.338 76 16
C =CC=CC=C (C,H substituents, conjugated) 1.345 1.345 0.012 1.337 1.350 58 16
C =C—Car (C,H substituents, conjugated) 1.339 1.340 0.011 1.334 1.346 124 16
C =C in cyclopenta-1,3-diene (any substituent) 1.341 1.341 0.017 1.328 1.356 18  
C =C in cyclohexa-1,3-diene (any substituent) 1.332 1.332 0.013 1.323 1.341 56  
in C=C—C=O (C,H substituent, conjugated) 1.340 1.340 0.013 1.332 1.348 211 16, 18
in C=C—C=O (C,H substituent, unconjugated) 1.331 1.330 0.008 1.326 1.339 14 17, 18
in C=C—C=O (C,H substituent, overall) 1.340 1.339 0.013 1.332 1.348 226  
in cyclohexa-2,5-dien-1-ones 1.329 1.327 0.011 1.321 1.335 28  
in p-benzoquinones (C*,H substituents) 1.333 1.337 0.011 1.325 1.338 14  
in p-benzoquinones (any substituent) 1.349 1.339 0.030 1.330 1.364 86  
in TCNQ (endocyclic) 1.352 1.353 0.010 1.345 1.358 142 19
in TCNQ (exocyclic) 1.392 1.391 0.017 1.379 1.405 139 19
C =C—OH in enol tautomers 1.362 1.360 0.020 1.349 1.370 54  
in heterocycles (any substituent)              
 1H-pyrrole (C2—C3, C4—C5) 1.375 1.377 0.018 1.361 1.388 58  
 furan  (C2—C3, C4—C5) 1.341 1.342 0.021 1.329 1.351 125  
 thiophene  (C2—C3, C4—C5) 1.362 1.359 0.025 1.346 1.377 60  
 pyrazole  (C4—C5) 1.369 1.372 0.019 1.362 1.383 20  
 imidazole  (C4—C5) 1.360 1.361 0.014 1.352 1.367 44  
 isoxazole  (C4—C5) 1.341 1.336 0.012 1.331 1.355 9  
 indole  (C2—C3) 1.364 1.363 0.012 1.355 1.371 40  
Car[\ddb]Car in phenyl rings with C*,H substituents only:              
 H—C[\ddb]C—H 1.380 1.381 0.013 1.372 1.388 2191  
 C*—C[\ddb]C—H 1.387 1.388 0.010 1.382 1.393 891  
 C*—C[\ddb]C—C* 1.397 1.397 0.009 1.392 1.403 182  
C[\ddb]C (overall) 1.384 1.384 0.013 1.375 1.391 3264  
F—C[\ddb]C—F 1.372 1.374 0.011 1.366 1.380 84 4
Cl—C[\ddb]C—Cl 1.388 1.389 0.014 1.380 1.398 152 4
in naphthalene (D2h) C1—C2 1.364 1.364 0.014 1.356 1.373 440  
 (any substituent) C2—C3 1.406 1.406 0.014 1.397 1.415 218  
 (any substituent) C1—C8a 1.420 1.419 0.012 1.412 1.426 440  
 (any substituent) C4a—C8a 1.422 1.424 0.011 1.417 1.429 109  
in anthracene (D2h) C1—C2 1.356 1.356 0.009 1.350 1.360 56  
 (any substituent) C2—C3 1.410 1.410 0.010 1.401 1.416 34  
 (any substituent) C1—C9a 1.430 1.430 0.006 1.426 1.434 56  
 (any substituent) C4a—C9a 1.435 1.436 0.007 1.429 1.440 34  
 (any substituent) C9—C9a 1.400 1.402 0.009 1.395 1.406 68  
in pyridine (C,H substituent) 1.379 1.381 0.012 1.371 1.387 276 20
in pyridine (any substituents) 1.380 1.380 0.015 1.371 1.389 537 20
in pyridinium cation:              
 (N+—H; C,H substituents on C) C2—C3 1.373 1.375 0.012 1.368 1.380 30  
 (N+—H; C,H substituents on C) C3—C4 1.379 1.380 0.011 1.371 1.388 30  
 (N+X; C,H substituents on C) C2—C3 1.373 1.372 0.019 1.362 1.382 151  
 (N+X; C,H substituents on C) C3—C4 1.383 1.385 0.019 1.372 1.394 151  
in pyrazine (H substituent on C) 1.379 1.377 0.010 1.370 1.388 10  
in pyrazine (any substituent on C) 1.405 1.405 0.024 1.388 1.420 60  
in pyrimidine (C,H substituents on C) 1.387 1.389 0.018 1.379 1.400 28  
Csp1≡Csp1 X CCX 1.183 1.183 0.014 1.174 1.193 119 15
C,H—CC—C,H 1.181 1.181 0.014 1.173 1.192 104 15
in CC—C(sp2, ar) 1.189 1.193 0.010 1.181 1.195 38 15
in CCCC 1.192 1.192 0.010 1.187 1.197 42 15
in CH≡C—C# 1.174 1.174 0.011 1.167 1.180 42 15
Csp3—Cl Omitting 1,2-dichlorides:              
 C—CH2Cl 1.790 1.790 0.007 1.783 1.795 13 4
 C2CH—Cl 1.803 1.802 0.003 1.800 1.807 8 4
 C3CCl 1.849 1.856 0.011 1.837 1.858 5 4
XCH2Cl (X = C,H,N,O) 1.790 1.791 0.011 1.783 1.797 37 4
X2CH—Cl (X = C,H,N,O) 1.805 1.803 0.014 1.800 1.812 26 4
X3CCl (X = C,H,N,O) 1.843 1.838 0.014 1.835 1.858 7 4
X2CCl2 (X = C,H,N,O) 1.779 1.776 0.015 1.769 1.790 18 4
XCCl3 (X = C,H,N,O) 1.768 1.765 0.011 1.761 1.776 33 4
ClCH(—C)—CH(—C)—Cl 1.793 1.793 0.013 1.786 1.800 66 4
ClC(—C2)—C(—C2)—Cl 1.762 1.760 0.010 1.757 1.765 54 4
 cyclopropyl—Cl 1.755 1.756 0.011 1.749 1.763 64  
Csp2—Cl C=CCl (C,H,N,O substituents on C) 1.734 1.729 0.019 1.719 1.748 63 4
C=CCl2 (C,H,N,O substituents on C) 1.720 1.716 0.013 1.708 1.729 20 4
Cl C=CCl 1.713 1.711 0.011 1.705 1.720 80 4
Car—Cl C ar Cl (mono-Cl + m,p-Cl2) 1.739 1.741 0.010 1.734 1.745 340 4
C ar Cl (o-Cl2) 1.720 1.720 0.010 1.713 1.717 364 4
Csp1—Cl see HCLENE10 (1.634, 1.646)              
Csp3—F Omitting 1,2-difluorides:              
 C—CH2F and C2CH—F 1.399 1.399 0.017 1.389 1.408 25 4
 C3CF 1.428 1.431 0.009 1.421 1.435 11 4
 (C*,H)2CF2 1.349 1.347 0.012 1.342 1.356 58 4
 C*—CF3 1.336 1.334 0.007 1.330 1.344 12 4
FC*—C*—F 1.371 1.374 0.007 1.362 1.375 26 4
X3CF (X = C,H,N,O) 1.386 1.389 0.033 1.373 1.408 70 4
X2CF2 (X = C,H,N,O) 1.351 1.349 0.013 1.342 1.356 58 4
XCF3 (X = C,H,N,O) 1.322 1.323 0.015 1.314 1.332 309 4
FC(—X)2C(—X)2F (X = C,H,N,O) 1.373 1.374 0.009 1.362 1.377 30 4
FC(—X)2—NO2 (X = any substituent) 1.320 1.319 0.009 1.312 1.327 18  
Csp2—F C=CF (C,H,N,O substituents on C) 1.340 1.340 0.013 1.334 1.346 34 4
Car—F C ar F (mono-F + m,p-F2) 1.363 1.362 0.008 1.357 1.368 38 4
C ar F (o-F2) 1.340 1.340 0.009 1.336 1.344 167 4
Csp3—H C—CH3 (methyl) 1.059 1.061 0.030 1.039 1.083 83 21
C2CH2 (primary) 1.092 1.095 0.013 1.088 1.099 100 21
C3CH (secondary) 1.099 1.097 0.004 1.095 1.103 14 21
C2,3CH (primary and secondary) 1.093 1.095 0.012 1.089 1.100 118 21
X CH3 (methyl) 1.066 1.074 0.028 1.049 1.087 160 21
X 2 CH2 (primary) 1.092 1.095 0.012 1.088 1.099 230 21
X 3 CH (secondary) 1.099 1.099 0.007 1.095 1.103 117 21
X 2,3 CH (primary and secondary) 1.094 1.096 0.011 1.091 1.100 348 21
Csp2—H C—C=CH 1.077 1.079 0.012 1.074 1.085 14 21
Car—H C ar H 1.083 1.083 0.011 1.080 1.087 218 21
Csp3—I C* I 2.162 2.159 0.015 2.149 2.179 15 4
Car—I C ar I 2.095 2.095 0.015 2.089 2.104 51 4
Csp3—N(4) C* NH[^+_3] 1.488 1.488 0.013 1.482 1.495 298  
(C*) 2 NH[^+_2] 1.494 1.493 0.016 1.484 1.503 249  
(C*) 3 NH+ 1.502 1.502 0.015 1.491 1.512 509  
(C*) 4 N+ 1.510 1.509 0.020 1.496 1.523 319  
C* N+ (overall) 1.499 1.498 0.018 1.488 1.510 1370  
Csp3—N(3) C* N+ in N-substituted pyridinium 1.485 1.484 0.009 1.477 1.490 32  
C* NH2 (Nsp3: pyramidal) 1.469 1.470 0.010 1.462 1.474 19 22
(C*) 2 NH (Nsp3: pyramidal) 1.469 1.467 0.012 1.461 1.477 152 5, 22
(C*) 3 N (Nsp3: pyramidal) 1.469 1.468 0.014 1.460 1.476 1042 5, 22
C* Nsp3 (overall) 1.469 1.468 0.014 1.460 1.476 1201  
C sp 3 Nsp3 in aziridine 1.472 1.471 0.016 1.464 1.482 134  
C sp 3 Nsp3 in azetidine 1.484 1.481 0.018 1.472 1.495 21  
C sp 3 Nsp3 in tetrahydropyrrole 1.475 1.473 0.016 1.464 1.483 66  
C sp 3 Nsp3 in piperidine 1.473 1.473 0.013 1.460 1.479 240  
Csp3—Nsp2 (N planar) in:             23
 acyclic amides C*NH—C=O 1.454 1.451 0.011 1.446 1.461 78 14
β-lactams C*N(—X)—C=O (endo) 1.464 1.465 0.012 1.458 1.475 23 13
γ-lactams C*NH—C=O (endo) 1.457 1.458 0.011 1.449 1.465 20 13
γ-lactams C*N(—C*)—C=O (endo) 1.462 1.461 0.010 1.453 1.466 15 13
γ-lactams C*N(—C*)—C=O (exo) 1.458 1.456 0.014 1.448 1.465 15 13
δ-lactams C*NH—C=O (endo) 1.478 1.472 0.016 1.467 1.491 6 14
δ-lactams C*N(—C*)—C=O (endo) 1.479 1.476 0.007 1.475 1.482 15 14
δ-lactams C*N(—C*)—C=O (exo) 1.468 1.471 0.009 1.462 1.477 15 14
 nitro compounds (1,2-dinitro omitted):              
 C—CH2NO2 1.485 1.483 0.020 1.478 1.502 8  
 C2CH—NO2 1.509 1.509 0.011 1.502 1.511 12  
 C3CNO2 1.533 1.533 0.013 1.530 1.539 17  
 C2C—(NO2)2 1.537 1.536 0.016 1.525 1.550 19  
 1,2-dinitro: NO2C*C*NO2 1.552 1.550 0.023 1.536 1.572 32  
Csp3—N(2) C # N=N 1.493 1.493 0.020 1.477 1.506 54  
C* N=C—Car 1.465 1.468 0.011 1.461 1.472 75  
Csp2—N(3) C=CNH2 Nsp2 planar 1.336 1.344 0.017 1.317 1.348 10 23
C=CNH—C# Nsp2 planar 1.339 1.340 0.016 1.327 1.351 17 23
C=CN—(C#)2 Nsp2 planar 1.355 1.358 0.014 1.341 1.363 22 23
C=CN—(C#)2 Nsp3 pyramidal 1.416 1.418 0.018 1.397 1.432 18 22
Csp2—Nsp2 (N planar) in:             23
 acyclic amides NH2C=O 1.325 1.323 0.009 1.318 1.331 32 14
 acyclic amides C*—NH—C=O 1.334 1.333 0.011 1.326 1.343 78 14
 acyclic amides (C*)2NC=O 1.346 1.342 0.011 1.339 1.356 5 14
β-lactams C*—NH—C=O 1.385 1.388 0.019 1.374 1.396 23 13
γ-lactams C*—NH—C=O 1.331 1.331 0.011 1.326 1.337 20 13
γ-lactams C*—N(—C*)—C=O 1.347 1.344 0.014 1.335 1.359 15 13
δ-lactams C*—NH—C=O 1.334 1.334 0.006 1.330 1.339 6 14
δ-lactams C*—N(—C*)—C=O 1.352 1.353 0.010 1.344 1.356 15 14
 peptides C#N(—X)—C(—C#)(=O) 1.333 1.334 0.013 1.326 1.340 380 24
 ureas (NH2)2C=O 1.334 1.334 0.008 1.329 1.339 48 25, 26
 ureas (C#NH)2C=O 1.347 1.345 0.010 1.341 1.354 26 25
 ureas [(C#)nN]2C=O 1.363 1.359 0.014 1.354 1.370 40 25, 27
 thioureas (X2N)2C=S 1.346 1.343 0.023 1.328 1.361 192  
 imides [C#C(=O)]2NH 1.376 1.377 0.012 1.369 1.383 64  
 imides [C#C(=O)]2N—C# 1.389 1.383 0.017 1.376 1.404 38  
 imides [Csp2C(=O)]2N—C# 1.396 1.396 0.010 1.389 1.403 46  
 imides [Csp2C(=O)]2N—Csp2 1.409 1.406 0.020 1.391 1.419 28  
 guanidinium [C—(NH2)3]+ (unsubstituted) 1.321 1.320 0.008 1.314 1.327 39  
 guanidinium [C—(NH2)3]+ (any substituent) 1.328 1.325 0.015 1.317 1.333 140  
 in heterocyclic systems (any substituent):              
  1H-pyrrole (N1—C2, N1—C5) 1.372 1.374 0.016 1.363 1.384 58  
  indole (N1—C2) 1.370 1.370 0.012 1.364 1.377 40  
  pyrazole (N1—C5) 1.357 1.359 0.012 1.347 1.365 20  
  imidazole (N1—C2) 1.349 1.349 0.018 1.338 1.358 44  
  imidazole (N1—C5) 1.370 1.370 0.010 1.365 1.377 44  
Csp2—N(2) in imidazole (N3—C4) 1.376 1.377 0.011 1.369 1.384 44  
Car—N(4) C ar N+(C,H)3 1.465 1.466 0.007 1.461 1.470 23  
Car—N(3) C ar NH2 (Nsp2: planar) 1.355 1.360 0.020 1.340 1.372 33 23
C ar NH2 (Nsp3: pyramidal) 1.394 1.396 0.011 1.385 1.403 25 22
C ar NH2 (overall) 1.375 1.377 0.025 1.363 1.394 98 28
C ar NH—C# (Nsp2: planar) 1.353 1.353 0.007 1.347 1.359 16 23
C ar NH—C# (Nsp3: pyramidal) 1.419 1.423 0.017 1.412 1.432 8 22
C ar NH—C# (overall) 1.380 1.364 0.032 1.353 1.412 31 28
C ar N—(C#)2 (Nsp2: planar) 1.371 1.370 0.016 1.363 1.382 41 23
C ar N—(C#)2 (Nsp3: pyramidal) 1.426 1.425 0.011 1.421 1.431 22 22
C ar N—(C#)2 (overall) 1.390 1.385 0.030 1.366 1.420 69 28
in indole (N1—C7a) 1.372 1.372 0.007 1.367 1.376 40  
C ar NO2 1.468 1.469 0.014 1.460 1.476 556  
Car—N(2) C ar N=N 1.431 1.435 0.020 1.422 1.442 26  
Csp2=N(3) in furoxan (+N2=C3) 1.316 1.316 0.009 1.311 1.324 14  
Csp2=N(2) CarC=N—C# 1.279 1.279 0.008 1.275 1.285 75  
(C,H)2C=N—OH in oximes 1.281 1.280 0.013 1.273 1.288 67  
S—C=NX 1.302 1.302 0.021 1.285 1.319 36  
in pyrazole (N2=C3) 1.329 1.331 0.014 1.315 1.339 20  
in imidazole (C2=N3) 1.313 1.314 0.011 1.307 1.319 44  
in isoxazole (N2=C3) 1.314 1.315 0.009 1.305 1.320 9  
in furazan (N2=C3, C4=N5) 1.298 1.299 0.006 1.294 1.303 12  
in furoxan (C4=N5) 1.304 1.306 0.008 1.300 1.308 14  
Car[\ddb]N(3) C [\ddb] N + —H (pyrimidinium) 1.335 1.334 0.015 1.325 1.342 30  
C [\ddb] N + —C* (pyrimidinium) 1.346 1.346 0.010 1.340 1.352 64  
C [\ddb] N + —O (pyrimidinium) 1.362 1.359 0.013 1.353 1.369 56  
Car[\ddb]N(2) C [\ddb] N (pyridine) 1.337 1.338 0.012 1.300 1.344 269  
C [\ddb] N (pyrazine) 1.336 1.335 0.022 1.319 1.347 120  
C [\ddb] N [\ddb] C (pyrimidine) 1.339 1.338 0.015 1.333 1.342 28  
N [\ddb] C [\ddb] N (pyrimidine) 1.333 1.335 0.013 1.326 1.337 28  
C [\ddb] N (pyrimidine) (overall) 1.336 1.337 0.014 1.331 1.339 56  
in any six-membered N-containing  aromatic ring:              
 H—C[\ddb]N[\ddb]C—H 1.334 1.334 0.014 1.327 1.341 146  
 H—C[\ddb]N[\ddb]C—C* 1.339 1.341 0.013 1.336 1.345 38  
 C*—C[\ddb]N[\ddb]C—C* 1.345 1.345 0.008 1.342 1.348 24  
C[\ddb]N[\ddb]C (overall) 1.336 1.337 0.014 1.329 1.344 204  
Csp1≡N(2) X N+C (isocyanide) 1.144 1.147 0.006 1.140 1.148 6  
Csp1≡N(1) C*—CN 1.136 1.137 0.010 1.131 1.142 140  
C=C—CN in TCNQ 1.144 1.144 0.008 1.139 1.149 284 19
CarCN 1.138 1.138 0.007 1.133 1.143 31  
X —S—CN 1.144 1.141 0.012 1.138 1.151 10  
(S—CN) 1.155 1.156 0.012 1.147 1.165 14  
Csp3—O(2) in alcohols:              
CH3OH 1.413 1.414 0.018 1.395 1.425 17  
 C—CH2OH 1.426 1.426 0.011 1.420 1.431 75  
 C2CH—OH 1.432 1.431 0.011 1.425 1.439 266  
 C3COH 1.440 1.440 0.012 1.432 1.449 106  
C*OH (overall) 1.432 1.431 0.013 1.424 1.441 464  
in dialkyl ethers:             29
CH3O—C* 1.416 1.418 0.016 1.405 1.426 110  
 C—CH2O—C* 1.426 1.424 0.011 1.418 1.435 34  
 C2CH—O—C* 1.429 1.430 0.010 1.420 1.437 53  
 C3CO—C* 1.452 1.450 0.011 1.445 1.458 39  
C*—OC* (overall) 1.426 1.425 0.019 1.414 1.437 236 5
in aryl alkyl ethers:             29
CH3O—Car 1.424 1.424 0.012 1.417 1.431 616  
 C—CH2O—Car 1.431 1.430 0.013 1.422 1.438 188  
 C2CH—O—Car 1.447 1.446 0.020 1.435 1.466 58  
 C3CO—Car 1.470 1.469 0.018 1.456 1.483 55  
C*O—Car (overall) 1.429 1.427 0.018 1.419 1.436 917  
in alkyl esters of carboxylic acids:             12, 29
CH3O—C(=O)—C* 1.448 1.449 0.010 1.442 1.455 200  
 C—CH2O—C(=O)—C* 1.452 1.453 0.009 1.445 1.458 32  
 C2CH—O—C(=O)—C* 1.460 1.460 0.010 1.454 1.465 78  
 C3CO—C(=O)—C* 1.477 1.475 0.008 1.472 1.484 6  
C*O—C(=O)—C* (overall) 1.450 1.451 0.014 1.442 1.459 314  
in alkyl esters of α,β-unsaturated acids:              
C*O—C(=O)—C=C (overall) 1.453 1.452 0.013 1.444 1.459 112  
in alkyl esters of benzoic acid:              
C*O—C(=O)—C(phenyl) (overall) 1.454 1.454 0.012 1.446 1.463 219  
in ring systems:              
 oxirane (epoxide) (any substituent) 1.446 1.446 0.014 1.438 1.456 498 9
 oxetane (any substituent) 1.463 1.460 0.015 1.451 1.474 16  
 tetrahydrofuran (C,H substituents) 1.442 1.441 0.017 1.430 1.451 154  
 tetrahydropyran (C,H substituents) 1.441 1.442 0.015 1.431 1.451 22  
β-lactones: C*—O—C(=O) 1.492 1.494 0.010 1.481 1.501 4 16
γ-lactones: C*—O—C(=O) 1.464 1.464 0.012 1.455 1.473 110 12
δ-lactones: C*—O—C(=O) 1.461 1.464 0.017 1.452 1.473 27 12
O—C—O systems in gem-diols, and pyranose and furanose sugars:             30, 31
 HOC*OH 1.397 1.401 0.012 1.388 1.405 18  
C 5 O5C1O1H in pyranoses:              
 O1 axial (α): C5—O5 1.439 1.440 0.008 1.432 1.445 29  
 O1 axial (α): O5—C1 1.427 1.426 0.012 1.421 1.432 29  
 O1 axial (α): C1—O1 1.403 1.400 0.012 1.391 1.412 29  
 O1 equatorial (β): C5—O5 1.435 1.436 0.008 1.429 1.440 17  
 O1 equatorial (β): O5—C1 1.430 1.431 0.010 1.424 1.436 17  
 O1 equatorial (β): C1—O1 1.393 1.393 0.007 1.386 1.399 17  
α + β (overall): C5—O5 1.439 1.440 0.008 1.432 1.446 60  
α + β (overall): O5—C1 1.430 1.429 0.012 1.421 1.436 60  
α + β (overall): C1—O1 1.401 1.399 0.011 1.392 1.407 60  
C 4 O4C1O1H in furanoses:              
 (overall values) C4—O4 1.442 1.446 0.012 1.436 1.449 18  
 (overall values) O4—C1 1.432 1.432 0.012 1.421 1.443 18  
 (overall values) C1—O1 1.404 1.405 0.013 1.397 1.409 18  
C 5 O5C1O1—C* in pyranoses:              
 O1 axial (α): C5—O5 1.439 1.438 0.010 1.433 1.446 67  
 O1 axial (α): O5—C1 1.417 1.417 0.009 1.410 1.424 67  
 O1 axial (α): C1—O1 1.409 1.409 0.014 1.401 1.417 67  
 O1 axial (α): O1—C* 1.435 1.435 0.013 1.427 1.443 67  
 O1 equatorial (β): C5—O5 1.434 1.435 0.006 1.429 1.439 39  
 O1 equatorial (β): O5—C1 1.424 1.424 0.008 1.418 1.431 39  
 O1 equatorial (β): C1—O1 1.390 1.390 0.011 1.381 1.400 39  
 O1 equatorial (β): O1—C* 1.437 1.438 0.013 1.428 1.445 39  
α + β (overall): C5—O5 1.436 1.436 0.009 1.431 1.442 126  
α + β (overall): O5—C1 1.419 1.419 0.011 1.412 1.426 126  
α + β (overall): C1—O1 1.402 1.403 0.016 1.391 1.413 126  
α + β (overall): O1—C* 1.436 1.436 0.013 1.428 1.445 126  
C 4 O4C1O1C* in furanoses:              
 (overall values) C4—O4 1.443 1.445 0.013 1.429 1.453 23  
 (overall values) O4—C1 1.421 1.418 0.012 1.413 1.431 23  
 (overall values) C1—O1 1.410 1.409 0.014 1.401 1.420 23  
 (overall values) O1—C* 1.439 1.437 0.014 1.429 1.449 23  
Miscellaneous:              
C#O—SiX3 1.416 1.416 0.017 1.405 1.428 29  
C*O—SO2—C 1.465 1.461 0.014 1.454 1.475 33  
Csp2—O(2) in enols:  C=COH 1.333 1.331 0.017 1.324 1.342 53  
in enol esters:  C=CO—C* 1.354 1.353 0.016 1.341 1.363 40  
in acids:  C*—C(=O)—OH 1.308 1.311 0.019 1.298 1.320 174  
in acids:  C=C—C(=O)—OH 1.293 1.295 0.019 1.279 1.307 22  
in acids:  CarC(=O)—OH 1.305 1.311 0.020 1.291 1.317 75  
in esters:  C*—C(=O)—O—C* 1.336 1.337 0.014 1.328 1.346 551 12, 29
in esters:  C=C—C(=O)—O—C* 1.332 1.331 0.011 1.324 1.339 112  
in esters:  CarC(=O)—O—C* 1.337 1.335 0.013 1.329 1.344 219 12
in esters:  C*—C(=O)—O—C=C 1.362 1.359 0.018 1.351 1.374 26  
in esters:  C*—C(=O)—O—C=C 1.407 1.405 0.017 1.394 1.420 26  
in esters:  C*—C(=O)—O—Car 1.360 1.359 0.011 1.355 1.367 40 12
in anhydrides: O=COC=O 1.386 1.386 0.011 1.379 1.393 70  
in ring systems:              
 furan  (O1—C2, O1—C5) 1.368 1.369 0.015 1.359 1.377 125  
 isoxazole (O1—C5) 1.354 1.354 0.010 1.345 1.360 9  
β-lactones: C*—C(=O)—O—C* 1.359 1.359 0.013 1.348 1.371 4 13
γ-lactones: C*—C(=O)—O—C* 1.350 1.349 0.012 1.342 1.359 110 12
δ-lactones: C*—C(=O)—O—C* 1.339 1.339 0.016 1.332 1.347 27 12
Car—O(2) in phenols: CarOH 1.362 1.364 0.015 1.353 1.373 511  
in aryl alkyl ethers: CarO—C* 1.370 1.370 0.011 1.363 1.377 920 29, 32
in diaryl ethers: CarOCar 1.384 1.381 0.014 1.375 1.391 132  
in esters: CarO—C(=O)—C* 1.401 1.401 0.010 1.394 1.408 40 12
Csp2=O(1) in aldehydes and ketones:              
 C*—CH=O 1.192 1.912 0.005 1.188 1.197 7  
 (C*)2C=O 1.210 1.210 0.008 1.206 1.215 474 5
 (C#)2C=O in cyclobutanones 1.198 1.198 0.007 1.194 1.204 12  
 (C#)2C=O in cyclopentanones 1.208 1.208 0.007 1.203 1.212 155  
 (C#)2C=O in cyclohexanones 1.211 1.211 0.009 1.207 1.216 312  
 C=C—C=O 1.222 1.222 0.010 1.216 1.229 225  
 (C=C)2C=O 1.233 1.229 0.010 1.226 1.242 28  
 CarC=O 1.221 1.218 0.014 1.212 1.229 85  
 (Car)2C=O 1.230 1.226 0.015 1.220 1.238 66  
C=O in benzoquinones 1.222 1.220 0.013 1.211 1.231 86  
delocalized double bonds in carboxylate anions:              
 H—C[\ddb]O[^-_2] (formate) 1.242 1.243 0.012 1.234 1.252 24  
 C*—C[\ddb]O[^-_2] 1.254 1.253 0.010 1.247 1.261 114  
 C=C—C[\ddb]O[^-_2] 1.250 1.248 0.017 1.238 1.261 52  
 CarC[\ddb]O[^-_2] 1.255 1.253 0.010 1.249 1.262 22  
 HOOC—C[\ddb]O[^-_2] (hydrogen oxalate) 1.243 1.247 0.015 1.232 1.256 26  
O2[\ddb]CC[\ddb]O[^-_2] (oxalate) 1.251 1.251 0.007 1.248 1.254 18  
in carboxylic acids (X—COOH):              
 C*—C(=O)—OH 1.214 1.214 0.019 1.203 1.224 175  
 C=C—C(=O)—OH 1.229 1.226 0.017 1.218 1.237 22  
 CarC(=O)—OH 1.226 1.223 0.020 1.211 1.241 75  
in esters:              
 C*—C(=O)—O—C* 1.196 1.196 0.010 1.190 1.202 551 12
 C=C—C(=O)—O—C* 1.199 1.198 0.009 1.193 1.203 113  
 CarC(=O)—O—C* 1.202 1.201 0.009 1.196 1.207 218 12
 C*—C(=O)—O—C=C 1.190 1.190 0.014 1.184 1.198 26  
 C*—C(=O)—O—Car 1.187 1.188 0.011 1.181 1.195 40 12
in anhydrides: O=C—O—C=O 1.187 1.187 0.010 1.184 1.193 70  
in β-lactones: C*—C(=O)—O—C* 1.193 1.193 0.006 1.187 1.198 4 13
γ-lactones: C*—C(=O)—O—C* 1.201 1.202 0.009 1.196 1.206 109 12
δ-lactones: C*—C(=O)—O—C* 1.205 1.207 0.008 1.201 1.209 27 12
in amides:              
 NH2C(—C*)=O 1.234 1.233 0.012 1.225 1.243 32 14
 (C*—)(C*,H—)N—C(—C*)=O 1.231 1.231 0.012 1.224 1.238 378 14
β-lactams: C*—NH—C=O 1.198 1.200 0.012 1.193 1.204 23 13
γ-lactams: C*—NH—C=O 1.235 1.235 0.008 1.232 1.240 20 13
γ-lactams: C*—N(—C*)—C=O 1.225 1.226 0.011 1.217 1.233 15 13
δ-lactams: C*—NH—C=O 1.240 1.241 0.003 1.237 1.243 6 14
δ-lactams: O*—N(—C*)—C=O 1.233 1.233 0.007 1.229 1.239 15 14
in ureas:              
 (NH2)2C=O 1.256 1.256 0.007 1.249 1.261 24 25, 26
 (C#—NH)2C=O 1.241 1.237 0.011 1.235 1.245 13 25
 [(C#)n—N]2C=O 1.230 1.230 0.007 1.224 1.234 20 25, 27
Csp3—P(4) C3P+C* 1.800 1.802 0.015 1.790 1.812 35 33
C2P(=O)—CH3 1.791 1.790 0.006 1.786 1.795 10  
C2P(=O)—CH2—C 1.806 1.806 0.009 1.801 1.813 45  
C2P(=O)—CH—C2 1.821 1.821 0.009 1.815 1.828 15  
C2P(=O)—C—C3 1.841 1.842 0.008 1.835 1.847 14  
C2P(=O)—C* (overall) 1.813 1.811 0.017 1.800 1.822 84  
Csp3—P(3) C2PC* 1.855 1.857 0.019 1.840 1.870 23  
Car—P(4) C3P+Car 1.793 1.792 0.011 1.786 1.800 276  
C2P(=O)—Car 1.801 1.802 0.011 1.796 1.807 98  
Ph 3 P=N+=PPh3 1.795 1.795 0.008 1.789 1.800 197  
Car—P(3) C2PCar 1.836 1.837 0.010 1.830 1.844 102  
(N[\ddb])2PCar (P[\ddb]N aromatic) 1.795 1.793 0.011 1.788 1.803 43  
Csp3—S(4) C* SO2—C (C* = CH3 excluded) 1.786 1.782 0.018 1.774 1.797 75  
C* SO2—C (overall) 1.779 1.778 0.020 1.764 1.790 94  
C *—SO2—O—X 1.745 1.744 0.009 1.738 1.754 7 34
C* SO2—N—X2 1.758 1.736 0.018 1.746 1.773 17 34
Csp3—S(3) C* S(=O)—C (C* = CH3 excluded) 1.818 1.814 0.024 1.802 1.829 69  
C* S(=O)—C (overall) 1.809 1.806 0.025 1.793 1.820 88  
C H3S+[X_{2}] 1.786 1.787 0.007 1.779 1.792 21  
C* S+X2 (C* = CH3 excluded) 1.823 1.820 0.016 1.812 1.834 18  
C* S+—C2 (overall) 1.804 1.794 0.025 1.788 1.820 41  
Csp3—S(2) C *—SH 1.808 1.805 0.010 1.800 1.819 6  
C H3S—C* 1.789 1.787 0.008 1.784 1.794 9  
C—CH2S—C* 1.817 1.816 0.013 1.808 1.824 92  
C2CH—S—C* 1.819 1.819 0.011 1.811 1.825 32  
C3CS—C* 1.856 1.860 0.011 1.854 1.863 26  
C* SC* (overall) 1.819 1.817 0.019 1.809 1.827 242  
in thiirane 1.834 1.835 0.025 1.810 1.858 4 9
in thietane: see ZCMXSP (1.817, 1.844)              
in tetrahydrothiophene 1.827 1.826 0.018 1.811 1.837 20  
in tetrahydrothiopyran 1.823 1.821 0.014 1.812 1.832 24  
C—CH2S—S—X 1.823 1.820 0.014 1.813 1.832 41  
C3CS—S—X 1.863 1.865 0.015 1.848 1.878 11  
C* S—S—X (overall) 1.833 1.828 0.022 1.818 1.848 59  
Csp2—S(2) C=CS—C* 1.751 1.755 0.017 1.740 1.764 61  
C=CS—C=C (in tetrathiafulvalene) 1.741 1.741 0.011 1.733 1.750 88  
C=CS—C=C (in thiophene) 1.712 1.712 0.013 1.703 1.722 60  
O=CS—C# 1.762 1.759 0.018 1.747 1.778 20  
Car—S(4) C ar SO2—C 1.763 1.764 0.009 1.756 1.769 96  
C ar SO2—O—X 1.752 1.750 0.008 1.749 1.756 27  
C ar SO2—N—X2 1.758 1.759 0.013 1.749 1.765 106 35
Car—S(3) C ar S(=O)—C 1.790 1.790 0.010 1.783 1.798 41  
C ar S+X2 1.778 1.779 0.010 1.771 1.787 10  
Car—S(2) C ar S—C* 1.773 1.774 0.009 1.765 1.779 44  
C ar SCar 1.768 1.767 0.010 1.762 1.774 158  
C ar SCar (in phenothiazine) 1.764 1.764 0.008 1.760 1.769 48  
C ar S—S—X 1.777 1.777 0.012 1.767 1.785 47  
Csp1—S(2) N≡CSX 1.679 1.683 0.026 1.645 1.698 10  
Csp1—S(1) (N≡CS) 1.630 1.630 0.014 1.619 1.641 14  
Csp2=S(1) (C*)2C=S: see IPMUDS (1.599)              
(Car)2C=S: see CELDOM (1.611)              
(X)2C=S (X = C,N,O,S) 1.671 1.675 0.024 1.656 1.689 245  
X 2 N—C(=S)—S—X 1.660 1.660 0.016 1.648 1.674 38  
(X2N)2C=S (thioureas) 1.681 1.684 0.020 1.669 1.693 96  
N—C([\ddb]S)2 1.720 1.721 0.012 1.709 1.731 20  
Csp3—Se C # Se 1.970 1.967 0.032 1.948 1.998 21  
Csp2—Se(2) C=CSeC=C (in tetraselenafulvalene) 1.893 1.895 0.013 1.882 1.902 32  
Car—Se(3) Ph 3 Se+ 1.930 1.929 0.006 1.924 1.936 13  
Csp3—Si(5) C # SiX4 1.874 1.876 0.015 1.859 1.884 9  
Csp3—Si(4) C H3SiX3 1.857 1.857 0.018 1.848 1.869 552  
C* SiX3 (C* = CH3 excluded) 1.888 1.887 0.023 1.872 1.905 124  
C* SiX2 (overall) 1.863 1.861 0.024 1.850 1.875 681  
Car—Si(4) C ar SiX3 1.868 1.868 0.014 1.857 1.878 178  
Csp1—Si(4) C≡CSiX3 1.837 1.840 0.012 1.824 1.849 8  
Csp3—Te C # Te 2.158 2.159 0.030 2.128 2.177 13  
Car—Te C ar Te 2.116 2.115 0.020 2.104 2.130 72  
Csp2=Te see CEDCUJ (2.044)              
Cl—Cl see PHASCL (2.306, 2.227)              
Cl—I see CMBIDZ (2.563), HXPASC (2.541, 2.513), METAMM (2.552), BQUINI (2.416, 2.718)              
Cl—N see BECTAE (1.743–1.757), BOGPOC (1.705)              
Cl—O(1) in ClO[^-_4] 1.414 1.419 0.026 1.403 1.431 252  
Cl—P (N[\ddb])2PCl (N[\ddb]P aromatic) 1.997 1.994 0.015 1.989 2.004 46  
Cl P (overall) 2.008 2.001 0.035 1.986 2.028 111  
Cl—S Cl S (overall) 2.072 1.079 0.023 2.047 2.091 6  
see also longer bonds in CILSAR (2.283), BIHXIZ (2.357), CANLUY (2.749)              
Cl—Se See BIRGUE10, BIRHAL10, CTCNSE (2.234–2.851)              
Cl—Si(4) Cl SiX3 (monochloro) 2.072 2.075 0.009 2.066 2.078 5  
Cl 2 SiX2 and Cl3SiX 2.020 2.012 0.015 2.007 2.036 5  
Cl—Te Cl—Te in range 2.34–2.60 2.520 2.515 0.034 2.493 2.537 22 36
see also longer bonds in BARRIV, BOJPUL, CETUTE, EPHTEA, OPNTEC10 (2.73–2.94)              
F—N(3) F N—C2 and F2N—C 1.406 1.404 0.016 1.395 1.416 9  
F—P(6) in hexafluorophosphate, PF[^-_6] 1.579 1.587 0.025 1.563 1.598 72  
P—P(3) (N[\ddb])2PF (N[\ddb]P aromatic) 1.495 1.497 0.016 1.481 1.510 10  
F—S 43 observations in range 1.409–1.770 in a wide variety of environments              
F S(6) in F2SO2—C2 (see FPSULF10, BETJOZ) 1.640 1.646 0.011 1.626 1.649 6  
F S(4) in F2S(=O)—N (see BUDTEZ) 1.527 1.528 0.004 1.524 1.530 24 37
F—Si(6) in SiF[^{2-}_6] 1.694 1.701 0.013 1.677 1.703 6  
F—Si(5) F SiX4 1.636 1.639 0.035 1.602 1.657 10  
F—Si(4) F SiX3 1.588 1.587 0.014 1.581 1.599 24  
F—Te see CUCPIZ [F—Te(6) = 1.942, 1.937], FPHTEL [F—Te(4) = 2.006]              
H—N(4) X 3 N+H 1.033 1.036 0.022 1.026 1.045 87 21
H—N(3) X 2 NH 1.009 1.010 0.019 0.997 1.023 95 21
H—O(2) in alcohols C*—OH 0.967 0.969 0.010 0.959 0.974 63 21
in alcohols C#OH 0.967 0.970 0.010 0.959 0.974 73 21
in acids O=C—OH 1.015 1.017 0.017 1.001 1.031 16 21, 38
I—I in [{\rm I}^-_3] 2.917 2.918 0.011 2.907 2.927 6  
I—N see BZPRIB, CMBIDZ, HMTITI, HMTNTI, IFORAM, IODMAM (2.042–2.475)              
I—O X IO (see BZPRIB, CAJMAB, IBZDAC11) for IO[^-_6] see BOVMEE (1.829–1.912) 2.144 2.144 0.028 2.127 2.164 6  
I—P(3) see CEHKAB (2.490–2.493)            
I—S see DTHIBR10 (2.687), ISUREA10 (2.629), BZTPPI (3.251)              
I—Te(4) I TeX3 2.926 2.928 0.026 2.902 2.944 8  
N(4)—N(3) X 3 N+N0X2 (N0 planar) 1.414 1.414 0.005 1.412 1.418 13  
N(3)—N(3) (C)(C,H)—NaNb—(C)(C,H)             5, 39
Na, Nb pyramidal 1.454 1.452 0.021 1.444 1.457 44 40
Na pyramidal, Nb planar 1.420 1.420 0.015 1.407 1.433 68 40
Na, Nb planar 1.401 1.401 0.018 1.384 1.418 40 40
overall 1.425 1.425 0.027 1.407 1.443 139  
N(3)—N(2) in pyrazole (N1—N2) 1.366 1.366 0.019 1.350 1.375 20  
in pyridazinium (N1+[\ddb]N2) 1.350 1.349 0.010 1.345 1.361 7  
N(2)[\ddb]N(2) N [\ddb] N (aromatic) in pyridazine              
with C,H as ortho substituents 1.304 1.300 0.019 1.287 1.326 6  
with N,Cl as ortho substituents 1.368 1.373 0.011 1.362 1.375 9  
N(2)=N(2) C#N=N—C# (cis) 1.245 1.244 0.009 1.239 1.252 21  
C#N=N—C# (trans) 1.222 1.222 0.006 1.218 1.227 6  
C#N=N—C# (overall) 1.240 1.241 0.012 1.230 1.251 27  
CarN=N—Car 1.255 1.253 0.016 1.247 1.262 13  
X N=N=N  (azides) 1.216 1.226 0.028 1.202 1.237 19  
N(2)=N(1) X —N=N=N (azides) 1.124 1.128 0.015 1.114 1.137 19  
N(3)—O(2) (C,H)2NOH (Nsp2: planar) 1.396 1.394 0.012 1.390 1.401 28  
C2NO—C (Nsp3: pyramidal) 1.463 1.465 0.012 1.457 1.468 22  
C2NO—C (Nsp2: planar) 1.397 1.394 0.011 1.388 1.409 12  
in furoxan (N2—O1) 1.438 1.436 0.009 1.430 1.447 14  
N(3)—O(1) (C[\ddb])2N+O in pyridine N-oxides 1.304 1.299 0.015 1.291 1.316 11  
in furoxan (+N2—O6) 1.234 1.234 0.008 1.228 1.240 14  
N(2)—O(2) in oximes:              
 (C#)2—C=NOH 1.416 1.418 0.006 1.416 1.420 7  
 (H)(Csp2)—C=NOH 1.390 1.390 0.011 1.380 1.401 20  
 (C#)(Csp2)—C=NOH 1.402 1.403 0.010 1.393 1.410 18  
 (Csp2)2—C=NOH 1.378 1.377 0.017 1.365 1.393 16  
 (C,H)2—C=NOH (overall) 1.394 1.395 0.018 1.379 1.408 67  
in furazan  (O1—N2, O1—N5) 1.385 1.383 0.013 1.378 1.392 12  
in furoxan  (O1—N5) 1.380 1.380 0.011 1.370 1.388 14  
in isoxazole (O1—N2) 1.425 1.425 0.010 1.417 1.434 9  
N(3)=O(1) in nitrate ions NO[^-_3] 1.239 1.240 0.020 1.227 1.251 105  
in nitro groups:              
 C*—NO2 1.212 1.214 0.012 1.206 1.221 84  
 C#NO2 1.210 1.210 0.011 1.203 1.218 251  
 CarNO2 1.217 1.218 0.011 1.211 1.215 1116  
 C—NO2 (overall) 1.218 1.219 0.013 1.210 1.226 1733  
N(3)—P(4) X 2 P(=X)—NX2 Nsp2: planar 1.652 1.651 0.024 1.634 1.670 205  
X 2 P(=X)—NX2 Nsp3: pyramidal 1.683 1.683 0.005 1.680 1.686 6  
X 2 P(=X)—NX2 (overall) 1.662 1.662 0.029 1.639 1.682 358  
subsets of this group are:              
 O2P(=S)—NX2 1.628 1.624 0.015 1.615 1.634 9  
 C—P(=S)—(NX2)2 1.691 1.694 0.018 1.678 1.703 28  
 O—P(=S)—(NX2)2 1.652 1.654 0.014 1.642 1.664 28  
P(=O)—(NX2)3 1.663 1.668 0.026 1.640 1.679 78  
N(3)—P(3) NXP(—X)—NXP(—X)— (P2N2 ring) 1.730 1.721 0.017 1.716 1.748 20  
NXP(=S)—NXP(=S)— (P2N2 ring) 1.697 1.697 0.015 1.690 1.703 44  
in P-substituted phosphazenes:              
 (N[\ddb])2PN (amino) 1.637 1.638 0.014 1.625 1.651 16  
 (N[\ddb])2PN (aziridinyl) 1.672 1.674 0.010 1.665 1.676 15  
N(2)=P(4) Ph3P=N+=P—Ph3 1.571 1.573 0.013 1.563 1.580 66  
Ph3P=N—C,S 1.599 1.597 0.018 1.580 1.615 7  
N(2)[\ddb]P(3) N [\ddb] P aromatic in phosphazenes 1.582 1.582 0.019 1.571 1.594 126  
N [\ddb] P aromatic in P[\ddb]N[\ddb]S 1.604 1.606 0.009 1.594 1.612 36  
N(3)—S(4) C—SO2NH2 1.600 1.601 0.012 1.591 1.610 14 35
C—SO2NH—C# 1.633 1.633 0.019 1.615 1.652 47 35
C—SO2N—(C#)2 1.642 1.641 0.024 1.623 1.659 38 35
N(3)—S(2) C—SNX2 Nsp2: planar 1.710 1.707 0.019 1.698 1.722 22 23
(for Nsp3 pyramidal see MODIAZ: 1.765)              
X SNX2 Nsp2: planar 1.707 1.705 0.012 1.699 1.715 30 23
N(2)—S(2) C=NSX 1.656 1.663 0.027 1.632 1.677 36  
N(2)[\ddb]S(2) N [\ddb] S aromatic in P[\ddb]N[\ddb]S 1.560 1.558 0.011 1.554 1.563 37  
N(2)=S(2) N =S in N=S=N and N=S=S 1.541 1.546 0.022 1.521 1.558 37  
N(3)—Se see COJCUZ (1.830), DSEMOR10 (1.846, 1.852), MORTRS10 (1.841)              
N(2)—Se see SEBZQI (1.805), NAPSEZ10 (1.809, 1.820)              
N(2)=Se see CISMUM (1.790, 1.791)              
N(3)—Si(5) see DMESIP01, BOJLER, CASSAQ, CASYOK, CECXEN, CINTEY, CIPBUY, FMESIB, MNPSIL, PNPOSI (1.973–2.344)              
N(3)—Si(4) X 3 SiNX2 (overall) 1.748 1.746 0.022 1.735 1.757 170  
subsets of this group are:              
X3SiNHX 1.714 1.719 0.014 1.702 1.727 16  
X3SiNXSiX3 acyclic 1.743 1.744 0.016 1.731 1.755 45  
NSiN in four-membered rings 1.742 1.742 0.009 1.735 1.748 53  
NSiN in five-membered rings 1.741 1.742 0.019 1.726 1.749 33  
N(2)—Si(4) X 3 SiNSiX3 1.711 1.712 0.019 1.693 1.729 15  
N—Te see ACLTEP (2.402), BIBLAZ (1.980), CESSAU (2.023)              
O(2)—O(2) C*—OO—C*,H τ(OO) = 70–85° 1.464 1.464 0.009 1.458 1.472 12  
C*—OO—C*,H τ(OO) approx. 180° 1.482 1.480 0.005 1.478 1.486 5  
C*—OO—C*,H (overall) 1.469 1.471 0.012 1.461 1.478 17  
O=C—OO—C=O see ACBZPO01 (1.446), CEYLUN (1.452), CIMHIP (1.454)              
Si—OO—Si 1.496 1.499 0.005 1.490 1.499 10  
O(2)—P(5) X P—(OX)4             41
trigonal bipyramidal: axial 1.689 1.685 0.024 1.675 1.712 20  
trigonal bipyramidal: equatorial 1.619 1.622 0.024 1.604 1.628 20  
square pyramidal 1.662 1.661 0.020 1.649 1.673 28  
O(2)—P(4) C—OP([\ddb]O)[^{2-}_3] 1.621 1.622 0.007 1.615 1.628 12  
(H—O)2P([\ddb]O)[^-_2] 1.560 1.561 0.009 1.555 1.566 16  
(C—O)2P([\ddb]O)[^-_2] 1.608 1.607 0.013 1.599 1.615 16  
(C#O)3P=O 1.558 1.554 0.011 1.550 1.564 30  
(CarO)3P=O 1.587 1.588 0.014 1.572 1.599 19  
X OP(=O)—(C,N)2 1.590 1.585 0.016 1.577 1.601 33  
(XO)2P(=O)—(C,N) 1.571 1.572 0.013 1.563 1.579 70  
O(2)—P(3) (N[\ddb])2PO—C (N[\ddb]P aromatic) 1.573 1.573 0.011 1.563 1.584 16  
O(1)=P(4) C—O—P([\ddb]O)[^{2-}_3] (delocalized) 1.513 1.512 0.008 1.508 1.518 42  
(H—O)2P([\ddb]O)[^-_2] (delocalized) 1.503 1.503 0.005 1.499 1.508 16  
(C—O)2P([\ddb]O)[^-_2] (delocalized) 1.483 1.485 0.008 1.474 1.490 16  
(C—O)3P=O 1.449 1.448 0.007 1.446 1.452 18  
C3P=O 1.489 1.486 0.010 1.481 1.496 72  
N3P=O 1.461 1.462 0.014 1.449 1.470 26  
(C)2(N)—P=O 1.487 1.489 0.007 1.479 1.493 5  
(C,N)2(O)—P=O 1.467 1.465 0.007 1.462 1.472 33  
(C,N)(O)2P=O 1.457 1.458 0.009 1.454 1.462 35  
O(2)—S(4) C—OSO2—C 1.577 1.576 0.015 1.566 1.584 41  
C—OSO2—CH3 1.569 1.569 0.013 1.556 1.582 7  
C—OSO2—Car 1.580 1.578 0.015 1.571 1.588 27  
O(1)=S(4) C—SO2—C 1.436 1.437 0.010 1.431 1.442 316 42
X SO2—NX2 1.428 1.428 0.010 1.422 1.434 326  
C—SO2—N—(C,H)2 1.430 1.430 0.009 1.425 1.435 206  
C—SO2—O—C 1.423 1.423 0.008 1.418 1.428 82  
in SO[^{2-}_4] 1.472 1.473 0.013 1.463 1.481 104  
O(1)=S(3) C—S(=O)—C 1.497 1.498 0.013 1.489 1.505 90 5
O—Se see BAPPAJ, BIRGUE10, BIRHAL10, CXMSEO, DGLYSE, SPSEBU              
(1.597 for O=Se to 1.974 for O—Se)              
O(2)—Si(5) (XO)3Si—(N)(C) 1.663 1.658 0.023 1.650 1.665 21  
O(2)—Si(4) X 3 SiOX (overall) 1.631 1.630 0.022 1.617 1.646 191  
subsets of this group are:              
X3SiO—C# 1.645 1.647 0.012 1.634 1.652 29  
X3SiO—Si—X3 1.622 1.625 0.014 1.614 1.631 70  
X3SiOOSiX3 1.680 1.676 0.008 1.673 1.688 10  
O(2)—Te(6) (XO)6Te 1.927 1.927 0.020 1.908 1.942 16  
O(2)—Te(4) (XO)2TeX2 2.133 2.136 0.054 2.078 2.177 12  
P(4)—P(4) X 3 PPX3 2.256 2.259 0.025 2.243 2.277 6  
P(4)—P(3) see CECHEX (2.197), COZPIQ (2.249)              
P(3)—P(3) X 2 PPX2 2.214 2.210 0.022 2.200 2.224 41  
P(4)=P(4) see BUTSUE (2.054)              
P(3)=P(3) see BALXOB (2.034)              
P(4)=S(1) C3P=S 1.954 1.952 0.005 1.950 1.957 13  
(N,O)2(C)—P=S 1.922 1.924 0.014 1.913 1.927 26  
(N,O)3P=S 1.913 1.914 0.014 1.906 1.921 50  
P(4)=Se(1) X 3 P=Se 2.093 2.099 0.019 2.075 2.108 12  
P(3)—Si(4) X 2 PSiX3: 3- and 4-rings excluded 2.264 2.260 0.019 2.249 2.283 22  
(see BOPFER, BOPFIV, CASTOF10, COZVIW: 2.201–2.317)              
P(4)=Te(1) see MOPHTE (2.356), TTEBPZ (2.327)              
S(2)—S(2) C—SS—C τ (SS) = 75–105° 2.031 2.029 0.015 2.021 2.038 46  
C—SS—C τ (SS) = 0–20° 2.070 2.068 0.022 2.057 2.077 28  
C—SS—C (overall) 2.048 2.045 0.026 2.028 2.068 99  
in polysulfide chain —SSS 2.051 2.050 0.022 2.037 2.065 126  
S(2)—S(1) X —N=SS 1.897 1.896 0.012 1.887 1.908 5  
S—Se(4) see BUWZUO (2.264, 2.269)              
S—Se(2) X SeS (any) 2.193 2.195 0.015 2.174 2.207 9  
S(2)—Si(4) X 3 SiSX 2.145 2.138 0.020 2.130 2.158 19  
S(2)—Te X STe (any) 2.405 2.406 0.022 2.383 2.424 10  
X =STe (any) 2.682 2.686 0.035 2.673 2.694 28  
Se(2)—Se(2) X SeSeX 2.340 2.340 0.024 2.315 2.361 15  
Se(2)—Te(2) see BAWFUA, BAWGAH (2.524–2.561)            
Si(4)—Si(4) X 3 SiSiX3 three-membered rings excluded:  see CIHRAM (2.511) 2.359 2.359 0.012 2.349 2.366 42  
Te—Te see CAHJOK (2.751, 2.704)              
For numbered footnotes, see Appendix 9.5.1[link].
See opening paragraph of Section 9.5.3[link].

9.5.2. Methodology

| top | pdf |

9.5.2.1. Selection of crystallographic data

| top | pdf |

All results given in Table 9.5.1.1[link] are based on X-ray and neutron diffraction results retrieved from the September 1985 version of the CSD. Neutron diffraction data only were used to derive mean bond lengths involving H atoms. This version of the CSD contained results for 49 854 single-crystal diffraction studies of organo-carbon compounds; 10 324 of these satisfied the acceptance criteria listed below and were used in the averaging procedures:

  • (i) Structure is `organic', i.e. belongs to the CSD chemical classes 1–65 or 70 (Cambridge Crystallographic Data Centre User Manual, 1978[link]).

  • (ii) Atomic coordinates for the structure have been published and are available in the CSD.

  • (iii) Structure was determined from diffractometer data.

  • (iv) Structure does not contain unresolved numeric data errors from the original publication (such errors are usually typographical and are normally resolved by consultation with the authors).

  • (v) Structure was not reported to be disordered.

  • (vi) Only structures of higher precision were included on the basis of either (a) the crystallographic R factor was [\le] 0.07 and the reported mean estimated standard deviation (e.s.d.) of the C—C bond lengths was [\le] 0.010 Å (corresponds to AS flag = 1 or 2 in the CSD), or (b) the crystallographic R factor [\le] 0.05 and the mean e.s.d. for C—C bonds was not available in the database (AS = 0 in the CSD).

  • (vii) Where the structure of a given compound had been determined more than once within the limits of (i)–(vi), then only the most precise determination was used.

9.5.2.2. Program system

| top | pdf |

All calculations were performed on the University of Cambridge IBM 3081 D using the programs BIBSER, CONNSER, RETRIEVE, GEOM78, and PLUTO78 (Allen et al., 1979[link]). A stand-alone program was written to implement the selection criteria, whilst a new program (STATS) was written to perform the statistical calculations described below. It was also necessary to modify CONNSER to improve the precision with which it locates chemical substructures. In particular, the program was altered to permit the location of atoms with specified coordination numbers. This was essential in the case of carbon so that atoms with coordination numbers 2, 3 and 4 (equivalent to formal hybridization states sp1, sp2, sp3) could be distinguished easily and reliably. Considerable care was taken to ensure that the correct molecular fragment was located by GEOM78 in the generation of geometrical tabulations. This often involved the explicit specification of H atoms in fragments, and the extensive use of geometrical tests on valence and torsion angles. Considerable use was also made of chemical structural diagrams, which are available in the Cambridge in-house version of the CSD for some 81% of all entries. Chemical diagrams proved useful, for example, in identifying the various coordination environments commonly adopted by atoms such as As, B, P, etc.

9.5.2.3. Classification of bonds

| top | pdf |

The classification of bonds used in Table 9.5.1.1[link] is based on common functional groups, rings and ring systems, coordination spheres, etc. It is designed: (i) to appear logical, useful and reasonably self-explanatory to chemists, crystallographers, and others who may use the table; (ii) to permit a meaningful average value to be cited for each bond length. With reference to (ii), it was considered that a sample of bond lengths could be averaged meaningfully if: (a) the sample was unimodally distributed; (b) the sample standard deviation (σ) was reasonably small, ideally less than ca 0.02 Å; (c) there were no conspicuous outlying observations – those that occurred at > 4σ from the mean were automatically eliminated from the sample by STATS, other outliers were inspected carefully; (d) there were no compelling chemical reasons for further subdivision of the sample.

9.5.2.4. Statistics

| top | pdf |

Where there are less than four independent observations of a given bond length, then each individual observation is given explicitly in the table. In all other cases, the following statistics were generated by the program STATS.

  • (i) The unweighted sample mean, d, where [d=\textstyle\sum\limits^n_{i=1}d_i/n]and [d_i] is the ith observation of the bond length in a total sample of n observations. Recent work (Taylor & Kennard, 1983[link], 1985[link], 1986[link]) has shown that the unweighted mean is an acceptable (even preferable) alternative to the weighted mean, where the ith observation is assigned a weight equal to [1/\sigma^2(d_i)]. This is especially true (Taylor & Kennard, 1985[link]) where structures have been pre-screened on the basis of precision.

  • (ii) The sample median, m. This has the property that half of the observations in the sample exceed m, and half fall short of it.

  • (iii) The sample standard deviation, denoted here as σ, where: [\sigma=\textstyle\sum\limits^n_{i=1}\, [(d_i-d)^2/(n-1)]^{1/2}.]

  • (iv) The lower quartile for the sample, [q_l]. This has the property that 25% of the observations are less than [q_l] and 75% exceed it.

  • (v) The upper quartile for the sample, [q_u]. This has the property that 25% of the observations exceed [q_u], and 75% fall short of it.

  • (vi) The number (n) of observations in the sample.

The statistics given in the final table correspond to distributions for which the automatic 4σ cut-off (see above) had been applied, and any manual removal of additional outliers (an infrequent operation) has been performed. In practice, a very small percentage of observations was excluded by these methods. The major effect of removing outliers is to improve the sample standard deviation, as shown in Fig. 9.5.2.1[link] in which a single observation is deleted.

[Figure 9.5.2.1]

Figure 9.5.2.1| top | pdf |

Effect of the removal of outliers (contributors that are > 4σ from the mean) for the C—C bond in Car—C≡N fragments. Relevant statistics (see text) are:[\matrix{ & d & m & \sigma &q_l & q_u & n\cr(a)\hbox{ before}\hfill & 1.445 & 1.444 & 0.012 & 1.436 & 1.448 & 32\cr (b)\hbox{ after} \hfill & 1.455 & 1.444 & 0.008 & 1.436 & 1.448 & 31.}]

The statistics chosen for tabulation effectively describe the distribution of bond lengths in each case. For a symmetrical, normal distribution: the mean (d) will be approximately equal to the median (m); the lower and upper quartiles [(q_l,q_u)] will be approximately symmetric about the median: [m-q_l\simeq q_u-m], and 95% of the observations may be expected to lie within ±2σ of the mean value. For a skewed distribution, d and m may differ appreciably and [q_l] and [q_u] will be asymmetric with respect to m. When a bond-length distribution is negatively skewed as in Fig. 9.5.2.2[link],i.e. very short values are more common than very long values, then it may be due to thermal-motion effects; the distances used to prepare the table were not corrected for thermal libration.

[Figure 9.5.2.2]

Figure 9.5.2.2| top | pdf |

Skewed distribution of B—F bond lengths in [{\rm BF}_{4}^{-}] ions: d = 1.365, m = 1.372, σ = 0.029, ql = 1.352, qu = 1.390 for 84 observations. Note that dm and that ql, qu are asymmetrically disposed about the mean d.

In a number of cases, the initial bond-length distribution was clearly bimodal, as in Fig. 9.5.2.3(a)[link]. All cases of bimodality were resolved on chemical grounds before inclusion in the table, on the basis of hybridization, conformation-dependent conjugation interactions, etc. For example, the histogram of Fig. 9.5.2.3(a)[link] was resolved into the two discrete unimodal distributions of Figs. 9.5.2.3(b), (c)[link], which correspond to planar N(sp2), pyramidal N(sp3), respectively. The mean valence angle at N was used as the discriminator, with a range of 108–114° for Nsp3 and [\ge] 117.5° for Nsp2.

[Figure 9.5.2.3]

Figure 9.5.2.3| top | pdf |

Resolution of the bimodal distribution of C—N bond lengths in Car —N(Csp3)2 fragments: (a) complete distribution; (b) distribution for planar N, mean valence angle at N > 117.6°; (c) distribution for pyramidal N, mean valence angle at N in the range 108–114°.

9.5.3. Content and arrangement of the table

| top | pdf |

The upper triangular matrix of Fig. 9.5.3.1(a)[link] shows the 120 possible element-pair combinations that can be formed from the 15 elements As, B, Br, C, Cl, F, H, I, N, O, P, S, Se, Si, Te. Fig. 9.5.3.1(a)[link] contains the number of discrete average bond lengths given in the table for each element pair. 682 average values are cited for 65 element pairs, of which 511 (75%) involve carbon. Bond-length values from individual structures are given for a further 30 element pairs indicated by an asterisk in Fig. 9.5.3.1(a)[link]. Individual structures are identified by their CSD reference code (e.g. BOGSUL), and short-form literature references, ordered alphabetically by reference code, are given in Appendix 9.5.2[link]. For eight element pairs, the acceptance criterion (vi) was relaxed to include all available structures, irrespective of precision. These entries are denoted by a dagger in the table. No bonds were found for 25 element pairs within the subset of CSD used in this study.

[Figure 9.5.3.1]

Figure 9.5.3.1| top | pdf |

(a) Distribution of mean bond-length values reported in the table by element pair. An asterisk indicates a bonded pair represented by less than four contributors in the original data set. A `+' indicates bonded pairs located when restrictions on R factor and reported e.s.d. limits were lifted (see text). (b) Distribution of mean bond-length values reported in the table for C—C, C—O, C—N.

Each entry in Table 9.5.1.1[link] contains nine columns, of which six record the statistics of the bond-length distribution described above. The content of the remaining three columns: `Bond', `Structure', `Note', are now described.

9.5.3.1. Ordering of entries: the `Bond' column

| top | pdf |

For an element pair X—Y, the primary ordering is alphabetic by element symbols according to the rows of Fig. 9.5.3.1(a)[link]; i.e. X changes slowest, Y fastest. The complete sequence runs from As—As to Te—Te with bonds involving carbon in the natural position: As—C[\ldots]C—C[\ldots]C—Te. Within a given X—Y pair, a secondary ordering is based on the coordination numbers (j) of X and Y, and on the nature of the bond between them. The bond definition is of the form X(j)—Y(j), with j decreasing fastest for Y, slowest for X, and with all single bonds preceding any multiple bonds. For carbon, the formal hybridization state replaces (but is equivalent to) the coordination number and it is for this element that the ordering rules are most clearly required. The ordering of the most populous C—C, C—N, C—O sections is illustrated in Fig. 9.5.3.1(b)[link]. The 13 possible C—C combinations follow the sequence Csp3—Csp3, Csp3—Csp2, Csp3—Car, Csp3—Csp1, Csp2—Csp2, Csp2—Car, Csp2—Csp1, Car—Car, Car—Csp1, Csp1—Csp1, Csp2=Csp2, Car[\ddb]Car, Csp1≡Csp1. The symbol Car represents aryl carbon in six-membered rings, which is treated separately from Csp2 throughout the table. The symbol [\ddb] is used to indicate a delocalized double or aromatic bond according to context.

9.5.3.2. Definition of `Substructure'

| top | pdf |

The chemical environment of each bond is normally defined by a linear formulation of the substructure. The target bond is set in bold type, e.g. CarCN (aryl cyanides); C—CH2O—Car (primary alkyl aryl ethers); (C—O)2P([\ddb]O)2 (phosphate diesters). Occasionally, the chemical name of a functional group or ring system is used to define bond environment, e.g. in naphthalene, C2—C3; in imidazole, N1—C2. To avoid any possible ambiguity in these cases, we include numbered chemical diagrams in Fig. 9.5.3.2[link]. A combination of chemical name and linear formulation is often employed to increase the precision of the definition, e.g. NH2C=O in acyclic amides; C=CC(=O)—C=O in benzoquinone. Finally, for very simple ions, the accepted conventional representation is deemed to be sufficient, e.g. in [{\rm NO}^{-}_3], [{\rm SO}^{2-}_4], etc.

[Figure 9.5.3.2]

Figure 9.5.3.2| top | pdf |

Alphabetized index of ring systems referred to in the table; the numbering scheme used in assembling the bond-length data is given where necessary.

The chemical definition of substructure may be followed by brief qualifying information, concerning substitution, conformational restrictions, etc. For example: Csp3—Csp3: in cyclobutane (any substituent); XCF3 (X = C, H, N, O); CarNH—Csp3 (Nsp3: pyramidal). Where the generic symbol X is unqualified, it denotes any element type, including hydrogen. If the qualifying information is too extensive, then it will be given as a table footnote (see below).

The `Substructure' column is designed to convey as much unambiguous information as possible within a small space. For Csp3, we have employed the short forms C* and C#. C* indicates Csp3 whose bonds, additional to those specified in the linear formulation, are to C or H atoms only. C*—OH would then represent the group of alcohols CH3—OH, —C—CH2—OH, —C2—CH—OH and —C3—C—OH. C* is frequently used to restrict the secondary environment of a given bond to avoid the perturbing influence of, e.g., electronegative substituents. The symbol C# is merely a space-saving device to indicate any Csp3 atom and includes C* as a subset.

9.5.3.3. Use of the `Note' column

| top | pdf |

The `Note' column refers to the footnotes collected in Appendix 9.5.1[link]. These record additional information as follows: (a) additional details concerning the chemical definition of substructures, e.g. the omission of three- and four-membered rings; (b) statements of geometrical constraints used in obtaining the cited average, e.g. definition of planarity or pyramidality at N, torsional constraints in conjugated systems; (c) any peculiarities of a particular bond-length distribution, e.g. sample dominated by C* = methyl; (d) references to previously published surveys of crystallographic results relevant to the substructure in question. We do not claim that these references are in any way comprehensive and we would be grateful to authors for notification (to FHA) of any omissions. This will serve to improve the content of any future version of the table.

9.5.4. Discussion

| top | pdf |

It should be remembered that this table has been derived from the organic section of CSD. We are aware that a number of organic bond types which occur very frequently in organometallics and metal complexes (e.g. C[\ddb]C in cyclopentadienyl, C—P in triphenylphosphine, etc.) are either absent or poorly represented in this work. These omissions are rectified in Chapter 9.6[link] . We also note that certain bond types listed here (e.g. As—O, Si—O, Si—N, etc.) will occur with greater frequency in inorganic compounds. The interested reader is referred to the Inorganic Crystal Structure Database (Bergerhoff, Hundt, Sievers & Brown, 1983[link]) for a machine-readable compendium of more relevant structural data.

The tabulation given here represents the first stage in a major project designed to obtain the average geometries of function groups, rigid rings, and the low-energy conformations of flexible rings. Details of mean bond lengths, valence angles, and conformational preferences in a wide range of substructures will form the basis of a machine-readable `fragment library' for use in molecular modelling and other areas of research. The systematic survey will be extended to derive information about distances, angles, directionality, and environmental dependence of hydrogen bonds and non-bonded interactions.

Appendix A9.5.1

A9.5.1. Notes to Table 9.5.1.1[link]

| top | pdf |

  • (1)  Sample dominated by B—CH3. For longer bonds in B—CH3, see LITMEB10 [B(4)—CH3 = 1.621–1.644 Å].

  • (2)  p(π)—p(π) bonding with Bsp2 and Nsp2 coplanar (τBN = 0 ± 15°) predominates. See G. Schmidt, R. Boese & D. Bläser [Z. Naturforsch. Teil B (1982), 37, 1230–1233].

  • (3)  84 observations range from 1.38 to 1.62 Å and individual values depend on substituents on B and O. For a discussion of borinic acid adducts, see S. J. Rettig & J. Trotter [Can. J. Chem. (1982), 60, 2957–2964].

  • (4)  See M. Kaftory (1983). [In The chemistry of functional groups. Supplement D: The chemistry of halides, pseudohalides and azides, Part 2, Chap. 24, edited by S. Patai & Z. Rappoport. New York: John Wiley.]

  • (5)  Bonds that are endocyclic or exocyclic to any three- or four-membered rings have been omitted from all averages in this section.

  • (6)  The overall average given here is for Csp3—Csp3 bonds which carry only C or H substituents. The value cited reflects the relative abundance of each `substitution' group. The `mean of means' for the nine subgroups is 1.538 (σ = 0.022) Å.

  • (7)  See (a) F. H. Allen [Acta Cryst. (1980), B36, 81–96] and (b) F. H. Allen [Acta Cryst. (1981), B37, 890–900].

  • (8)  See F. H. Allen [Acta Cryst. (1984), B40, 64–72].

  • (9)  See F. H. Allen [Tetrahedron (1982), 38, 2843–2853].

  • (10)  See F. H. Allen [Tetrahedron (1982), 38, 645–655].

  • (11)  Cyclopropanones and cyclobutanones excluded.

  • (12)  See W. B. Schweizer & J. D. Dunitz [Helv. Chim. Acta (1982), 65, 1547–1554].

  • (13)  See L. Norskov-Lauritsen, H.-B. Bürgi, P. Hoffmann & H. R. Schmidt [Helv. Chim. Acta (1985), 68, 76–82].

  • (14)  See P. Chakrabarti & J. D. Dunitz [Helv. Chim. Acta (1982), 65, 1555–1562].

  • (15)  See J. L. Hencher (1978). [In The chemistry of the C≡C triple bond, Chap. 2, edited by S. Patai. New York: John Wiley.]

  • (16)  Conjugated: torsion angles about central C—C single bond is 0 ± 20° (cis) or 180 ± 20° (trans).

  • (17)  Unconjugated: torsion angle about central C—C single bond is 20–160°.

  • (18)  Other conjugative substituents excluded.

  • (19)  TCNQ is tetracyanoquinodimethane (see diagrams).

  • (20)  No difference detected between C2[\ddb]C3 and C3[\ddb]C4 bonds.

  • (21)  Derived from neutron diffraction results only.

  • (22) Nsp3: pyramidal; mean valence angle at N is in the range 108–114°.

  • (23) Nsp2: planar; mean valence angle at N is ≥ 117.5°.

  • (24) Cyclic and acyclic peptides.

  • (25) See R. H. Blessing [J. Am. Chem. Soc. (1983), 105, 2776–2783].

  • (26) See L. Lebioda [Acta Cryst. (1980), B36, 271–275].

  • (27) n = 3 or 4; i.e. tri- or tetrasubstituted ureas.

  • (28) Overall value also includes structures with mean valence angle at N in the range 115–118°.

  • (29) See F. H. Allen & A. J. Kirby [J. Am. Chem. Soc. (1984), 106, 6197–6200].

  • (30) See A. J. Kirby (1983). [The anomeric effect and related stereoelectronic effects at oxygen. Berlin: Springer.]

  • (31) See B. Fuchs, L. Schleifer & E. Tartakovsky [Nouv. J. Chim. (1984), 8, 275–278].

  • (32) See S. C. Nyburg & C. H. Faerman [J. Mol. Struct. (1986), 140, 347–349].

  • (33) Sample dominated by P—CH3 and P—CH2—C.

  • (34) Sample dominated by C* = methyl.

  • (35) See A. Kálmán, M. Czugler & G. Argay [Acta Cryst. (1981), B37, 868–877].

  • (36) Bimodal distribution resolved into 22 `short' bonds and 5 longer outliers.

  • (37) All 24 observations come from BUDTEZ.

  • (38) `Long' O—H bonds in centrosymmetric [{\rm O} \cdots {\rm H} \cdots {\rm O}] H-bonded dimers are excluded.

  • (39) N—N bond length also dependent on torsion angle about N—N bond and on nature of substituent C atoms – these effects are ignored here.

  • (40) N pyramidal has average angle at N in the range 100–113.5°; N planar has average angle ≥ 117.5°.

  • (41) See R. R. Holmes & J. A. Deiters [J. Am. Chem. Soc. (1977), 99, 3318–3326].

  • (42) No detectable variation in S=O bond length with type of C substituent.

Appendix A9.5.2

A9.5.2. Short-form references to individual CSD entries cited by reference code in Table 9.5.1.1[link]

| top | pdf |

REFCODE Journal Vol. Page Year
ACBZPO01 J. Am. Chem. Soc. 97 6729 1975
ACLTEP J. Organomet. Chem. 184 417 1980
ASAZOC Dokl. Akad. Nauk SSSR 249 120 1979
BALXOB J. Am. Chem. Soc. 103 4587 1981
BAPPAJ Inorg. Chem. 20 3071 1981
BARRIV Acta Chem. Scand. Ser. A 35 433 1981
BAWFUA Cryst. Struct. Commun. 10 1345 1981
BAWGAH Cryst. Struct. Commun. 10 1353 1981
BECTAE J. Org. Chem. 46 5048 1981
BELNIP Z. Naturforsch. Teil B 37 299 1982
BEMLIO Chem. Ber. 115 1126 1982
BEPZEB Cryst. Struct. Commun. 11 175 1982
BETJOZ J. Am. Chem. Soc. 104 1683 1982
BETUTE10 Acta Chem. Scand. Ser. A 30 719 1976
BIBLAZ Zh. Strukt. Khim. 22 118-4 1981
BICGEZ Z. Anorg. Allg. Chem. 486 90 1982
BIHXIZ J. Chem. Soc. Chem. Commun.   982 1982
BIRGUE10 Z. Naturforsch. Teil B 38 20 1983
BIRHAL10 Z. Naturforsch. Teil B 37 1410 1982
BIZJAV J Organomet. Chem. 238 C1 1982
BOGPOC Z. Naturforsch. Teil B 37 1402 1982
BOGSUL Z. Naturforsch. Teil B 37 1230 1982
BOJLER Z. Anorg. Allg. Chem. 493 53 1982
BOJPUL Acta Chem. Scand. Ser. A 36 829 1982
BOPFER Chem. Ber. 116 146 1983
BOPFIV Chem. Ber. 116 146 1983
BOVMEE Acta Cryst. Sect. B 38 1048 1982
BQUINI Acta Cryst. Sect. B 35 1930 1979
BTUPTE Acta Chem. Scand. Ser. A 29 738 1975
BUDTEZ Z. Naturforsch. Teil B 38 454 1983
BUPSIB10 Z. Anorg. Allg. Chem. 474 31 1981
BUSHAY Z. Naturforsch. Teil B 38 692 1983
BUTHAZ10 Inorg. Chem. 23 2582 1984
BUTSUE J. Chem. Soc. Chem. Commun.   862 1983
BUWZUO Acta Chem. Scand. Ser. A 37 219 1983
BZPRIB Z. Naturforsch. Teil B 36 922 1981
BZTPPI Inorg. Chem. 17 894 1978
CAHJOK Inorg. Chem. 22 1809 1983
CAJMAB Chem. Z. 107 169 1983
CANLUY Tetrahedron Lett. 24 4337 1983
CASSAQ J. Struct. Chem. 2 101-2 1983
CASTOF10 Acta Cryst. Sect. C 40 1879 1984
CASYOK J. Struct. Chem. 2 107-2 1983
CECHEX Z. Anorg. Allg. Chem. 508 61 1984
CECXEN J. Struct. Chem. 2 207-3 1983
CEDCUJ J. Org. Chem. 48 5149 1983
CEHKAB Z. Naturforsch. Teil B 39 139 1984
CELDOM Acta Cryst. Sect. C 40 556 1984
CESSAU Acta Cryst. Sect. C 40 653 1984
CETTAW Chem. Ber. 117 1089 1984
CETUTE Acta Chem. Scand. Ser. A 29 763 1975
CEYLUN Isv. Akad. Nauk SSR Ser. Khim.   2744 1983
CIFZUM Acta Chem. Scand. Ser. A 38 289 1984
CIHRAM Angew. Chem. Int. Ed. Engl. 23 302 1984
CILRUK J. Chem. Soc. Chem. Commun.   1023 1984
CILSAR J. Chem. Soc. Chem. Commun.   1021 1984
CIMHIP Acta Cryst. Sect. C 40 1458 1984
CINTEY Dokl. Acak. Nauk SSSR 274 615 1984
CIPBUY J. Struct. Chem. 2 281-4 1983
CISMUM Z. Naturforsch. Teil B 39 485 1984
CISTED Z. Anorg. Allg. Chem. 511 95 1984
CIWYIQ Inorg. Chem. 23 1946 1984
CIYFOF Inorg. Chem. 23 1790 1984
CMBIDZ J. Org. Chem. 44 1447 1979
CODDEE Z. Naturforsch. Teil B 39 1257 1984
CODDII Z. Naturforsch. Teil B 39 1257 1984
COFVOI Z. Naturforsch. Teil B 39 1027 1984
COJCUZ Chem. Ber. 117 2686 1984
COSDIX Z. Naturforsch. Teil B 39 1344 1984
COZPIQ Chem. Ber. 117 2063 1984
COZVIW Z. Anorg. Allg. Chem. 515 7 1984
CTCNSE J. Am. Chem. Soc. 102 5430 1980
CUCPIZ J. Am. Chem. Soc. 106 7529 1984
CUDLOC J. Cryst. Spectrosc. 15 53 1985
CUDLUI J. Cryst. Spectrosc. 15 53 1985
CUGBAH Acta Cryst. Sect. C 41 476 1985
CXMSEO Acta Cryst. Sect. B 29 595 1973
DGLYSE Acta Cryst. Sect. B 31 1785 1975
DMESIP01 Acta Cryst. Sect. C 40 895 1984
DSEMOR10 J. Chem. Soc. Dalton Trans.   628 1980
DTHIBR10 Inorg. Chem. 10 697 1971
EPHTEA Inorg. Chem. 19 2487 1980
ESEARS J. Chem. Soc. C   1511 1971
ETEARS J. Chem. Soc. C   1511 1971
FMESIB J. Organomet. Chem. 197 275 1980
FPHTEL J. Chem. Soc. Dalton Trans.   2306 1980
FPSULF10 J. Am. Chem. Soc. 104 1683 1982
HCLENE10 Acta Cryst. Sect. B 38 3139 1982
HMTITI Acta Cryst. Sect. B 31 1505 1975
HMTNTI Z. Anorg. Allg. Chem. 409 237 1974
HXPASC J. Chem. Soc. Dalton Trans .   1381 1975
IBZDAC11 J. Chem. Soc. Dalton Trans.   854 1979
IFORAM Monatsh. Chem. 105 621 1974
IODMAM Acta Cryst. Sect. B 33 3209 1977
IPMUDS Acta Cryst. Sect. B 29 2128 1973
ISUREA10 Acta Cryst. Sect. B 28 643 1972
LITMEB10 J. Am. Chem. Soc. 97 6401 1975
MESIAD Z. Naturforsch. Teil B 35 789 1980
METAMM Acta Cryst. 17 1336 1964
MNPSIL J. Am. Chem. Soc. 91 4134 1969
MODIAZ J. Heterocycl. Chem. 17 1217 1980
MOPHTE Acta Chem. Scand. Ser. A 34 333 1980
MORTRS10 J. Chem. Soc. Dalton Trans.   628 1980
NAPSEZ10 J. Am. Chem. Soc. 102 5070 1980
NBBZAM Z. Naturforsch. Teil B 32 1416 1977
OPIMAS Aust. J. Chem. 30 2417 1977
OPNTEC10 J. Chem. Soc. Dalton Trans.   251 1982
PHASCL Acta Cryst. Sect. B 37 1357 1981
PHASOC01 Aust. J. Chem. 28 15 1975
PNPOSI J. Am. Chem. Soc. 90 5102 1968
SEBZQI J. Chem. Soc. Chem. Commun.   325 1977
SPSEBU Acta Chem. Scand. Ser. A 33 403 1979
TEACBR Cryst. Struct. Commun. 3 753 1974
THINBR J. Am. Chem. Soc. 92 4002 1970
TMPBTI Acta Cryst. Sect. B 31 1116 1975
TPASSN J. Chem. Soc. Dalton Trans.   514 1977
TPASTB Cryst. Struct. Commun. 5 39 1976
TPHOSI Z. Naturforsch. Teil B 34 1064 1979
TTEBPZ Z. Naturforsch. Teil B 34 256 1979
ZCMXSP Cryst. Struct. Commun. 6 93 1977

Pages of the form n-m indicate page n of issue m.

References

First citation Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. & Watson, D. G. (1979). The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information. Acta Cryst. B35, 2331–2339.Google Scholar
First citation Bergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. (1983). The Inorganic Crystal Structure Database. J. Chem. Inf. Comput. Sci. 23, 66–70.Google Scholar
First citation Cambridge Crystallographic Data Centre User Manual (1978). 2nd ed. Cambridge University, England.Google Scholar
First citation Harmony, M. D., Laurie, R. W., Kuczkowski, R. L., Schwendemann, R. H., Ramsay, D. A., Lovas, F. J., Lafferty, W. J. & Maki, A. G. (1979). Molecular structures of gas-phase polyatomic molecules determined by spectroscopic methods. J. Phys. Chem. Ref. Data, 8, 619–721.Google Scholar
First citation Kennard, O. (1962). Tables of bond lengths between carbon and other elements. International tables for X-ray crystallography, Vol. III, pp. 275–276. Birmingham: Kynoch Press.Google Scholar
First citation Kennard, O., Watson, D. G., Allen, F. H., Isaacs, N. W., Motherwell, W. D. S., Pettersen, R. C. & Town, W. G. (1972). Molecular structures and dimensions, Vol. A1. Interatomic distances 1960–65. Utrecht: Oosthoek.Google Scholar
First citation Sutton, L. E. (1958). Tables of interatomic distances and configuration in molecules and ions. Spec. Publ. No. 11. London: The Chemical Society.Google Scholar
First citation Sutton, L. E. (1965). Tables of interatomic distances and configuration in molecules and ions. Spec. Publ. No. 18. London: The Chemical Society.Google Scholar
First citation Taylor, R. & Kennard, O. (1983). The estimation of average molecular dimensions from crystallographic data. Acta Cryst. B39, 517–525.Google Scholar
First citation Taylor, R. & Kennard, O. (1985). The estimation of average molecular dimensions. 2. Hypothesis testing with weighted and unweighted means. Acta Cryst. A41, 85–89.Google Scholar
First citation Taylor, R. & Kennard, O. (1986). Cambridge Crystallographic Data Centre. 7. Estimating average molecular dimensions from the Cambridge Structural Database. J. Chem. Inf. Comput. Sci. 26, 28–32.Google Scholar








































to end of page
to top of page