International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 9.7, pp. 897-906
https://doi.org/10.1107/97809553602060000623

Chapter 9.7. The space-group distribution of molecular organic structures

A. J. C. Wilson,a V. L. Karenb and A. Mighellb

a St John's College, Cambridge CB2 1TP, England, and bNIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

References

First citation Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Smith, J. M. & Watson, D. G. (1991). The development of versions 3 and 4 of the Cambridge Structural Database system. J. Chem. Inf. Comput. Sci. 31, 187–204.Google Scholar
First citation Baker, R. J. & Nelder, J. A. (1978). The GLIM System. Release 3. Oxford: Numerical Algorithms Group.Google Scholar
First citation Belsky, V. K., Zorkaya, O. N. & Zorky, P. M. (1995). Structural classes and space groups of organic homomolecular crystals: new statistical data. Acta Cryst. A51, 473–481.Google Scholar
First citation Belsky, V. K. & Zorky, P. M. (1977). Distribution of homomolecular crystals by chiral types and structural classes. Acta Cryst. A33, 1004–1006.Google Scholar
First citation Bertaut, E. F. (2005). International tables for crystallography, Vol. A, fifth edition, Chap. 4.1. Heidelberg: Springer.Google Scholar
First citation Brock, C. P. & Dunitz, J. D. (1994). Towards a grammar of crystal packing. Chem. Mater. 6, 1118–1127.Google Scholar
First citation Coutanceau Clarke, J. A. R. (1972). New periodic close packings of identical spheres. Nature (London), 240, 408–410.Google Scholar
First citation Donohue, J. (1985). Revised space-group frequencies for organic compounds. Acta Cryst. A41, 203–204.Google Scholar
First citation Evans, R. C. (1964). An introduction to crystal chemistry. Cambridge University Press.Google Scholar
First citation Filippini, G. & Gavezzotti, A. (1992). A quantitative analysis of the relative importance of symmetry operators in organic molecular crystals. Acta Cryst. B48, 230–234.Google Scholar
First citation Gavezzotti, A. (1991). Generation of possible crystal structures from the molecular structure for low-polarity organic compounds. J. Am. Chem. Soc. 113, 4622–4629.Google Scholar
First citation Gavezzotti, A. (1994). Molecular packing and correlations between molecular and crystal properties. Structure correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, Chap. 12, pp. 509–542. Weinheim/New York/Basel/Cambridge/Tokyo: VCH Publishers.Google Scholar
First citation Gibson, K. D. & Scheraga, H. A. (1995). Crystal packings without symmetry constraints. 1. Test of a new algorithm for determining crystal structures by energy minimization. J. Phys. Chem. 99, 3752–3764.Google Scholar
First citation Hahn, Th. (2005). Editor. International tables for crystallography, Vol. A, Space-group symmetry, fifth edition. Heidelberg: Springer.Google Scholar
First citation Kitaigorodskii, A. I. (1961). Organic chemical crystallography. New York: Consultants Bureau.Google Scholar
First citation Kitaigorodsky, A. I. (1945). The close-packing of molecules in crystals of organic compounds. J. Phys. (Moscow), 9, 351–352.Google Scholar
First citation Kitaigorodsky, A. I. (1973). Molecular crystals and molecules. New York: Academic Press.Google Scholar
First citation Kitajgorodskij, A. I. (1955). Organicheskaya Kristallokhimiya. Moscow: Academy of Science.Google Scholar
First citation Lidin, S., Jacob, M. & Andersson, S. (1995). A mathematical analysis of rod packings. J. Solid State Chem. 114, 36–41.Google Scholar
First citation Mezey, P. G. (1993). Shape in chemistry, an introduction into molecular shape and topology. New York/Weinheim/Cambridge: VCH Publishers.Google Scholar
First citation Mighell, A. D., Himes, V. L. & Rodgers, J. R. (1983). Space-group frequencies for organic compounds. Acta Cryst. A39, 737–740.Google Scholar
First citation Nowacki, W. (1942). Symmetrie und physikalisch-chemische Eigenschaften krystallisierter Verbindungen. I. Die Verteilung der Kristallstrukturen über die 219 Raumgruppen. Helv. Chim. Acta, 25, 863–878.Google Scholar
First citation Nowacki, W. (1943). Symmetrie und physikalisch-chemische Eigenschaften kristallisierter Verbindungen. II. Die allgemeinen Bauprinzipien organischer Verbindungen. Helv. Chim. Acta, 26, 459–462.Google Scholar
First citation Padmaya, N., Ramakumar, S. & Viswamitra, M. A. (1990). Space-group frequencies of proteins and of organic compounds with more than one formula unit in the asymmetric unit. Acta Cryst. A46, 725–730.Google Scholar
First citation Patterson, A. L. & Kasper, J. S. (1959). Close packing. International tables for X-ray crystallography, Vol. II, Mathematical tables, pp. 342–354. Birmingham: Kynoch Press.Google Scholar
First citation Scaringe, R. P. (1991). A theoretical technique for layer structure prediction. Electron crystallography of organic molecules, edited by J. R. Fryer & D. L. Dorset, pp. 85–113. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Smith, A. J. (1973). Periodic close packings of identical spheres. Nature (London) Phys. Sci. 246(149), 10–11.Google Scholar
First citation Williams, D. E. G. (1987). Close packing of spheres. J. Chem. Phys. 87, 4207–4210.Google Scholar
First citation Wilson, A. J. C. (1980). Testing the hypothesis `no remaining systematic error' in parameter determination. Acta Cryst. A36, 937–944.Google Scholar
First citation Wilson, A. J. C. (1988). Space groups rare for organic structures. I. Triclinic, monoclinic and orthorhombic crystal classes. Acta Cryst. A44, 715–724.Google Scholar
First citation Wilson, A. J. C. (1990). Space groups rare for organic structures. II. Analysis by arithmetic crystal class. Acta Cryst. A46, 742–754.Google Scholar
First citation Wilson, A. J. C. (1991). Space groups rare for molecular organic structures: the arithmetic crystal class mmmP. Z. Kristallogr. 197, 85–88.Google Scholar
First citation Wilson, A. J. C. (1992). International tables for crystallography, Vol. C, Mathematical, physical and chemical tables, edited by A. J. C. Wilson, Chap. 9.7. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Wilson, A. J. C. (1993a). Kitajgorodskij's categories. Acta Cryst. A49, 210–212.Google Scholar
First citation Wilson, A. J. C. (1993b). Kitajgorodskij and space-group popularity. Acta Chim. Acad. Sci. Hung. 130, 183–196.Google Scholar
First citation Wilson, A. J. C. (1993c). Symmetry of organic crystalline compounds in the works of Kitajgorodskij. Kristallografiya, 38, 153–163. [In Russian.]Google Scholar
First citation Wilson, A. J. C. (1993d). Space groups rare for organic structures. III. Symmorphism and inherent molecular symmetry. Acta Cryst. A49, 795–806.Google Scholar