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9. BASIC STRUCTURAL FEATURES

a, = (a, ay) (9.8.4.11)

dual to (9.8.4.9). In the commensurate case, this correspondence
requires that the given superstructure be considered as the limit
of an incommensurate crystal [for which the embedding
(9.8.4.10) is a one-to-one relation].

As discussed below, point-group symmetries R of the
diffraction pattern, when expressed in terms of transformation
of the set of indices, define n-dimensional integral matrices that
can be considered as being n-dimensional orthogonal transfor-
mations R; in V, leaving invariant the Euclidean metric tensors:

gk = a5 - Ay and gy =ay - dg. (9.8.4.12)

The crystal classes considered in the tables suppose the existence
of main reflections defining a three-dimensional reciprocal
lattice. For that case, the embedding can be specialized by
making the choice

a;‘l:(a;k70) i=172139

* - . (9.8.4.13)
as(3+j):(33+jvdj) j=12,...,d=n-3,
and, correspondingly,
a; = (a;, a i =1,2,3,
v = @) (9.8.4.14)
A3 = 0,d) j=12,...,d,

with d} -d, =5, and a’-a, = §,. These are called standard
lattice bases.

9.8.4.2. Point groups
9.8.4.2.1. Laue class

Definition 1. The Laue point group P, of the diffraction
pattern is the point group in three dimensions that transforms
every diffraction peak into a peak of the same intensity. f

Because all diffraction vectors are of the form (9.8.4.5), the
action of an element R of the Laue group is given by

3+d

Rai = I'"Rya, i=1,....3+d. (9.8.4.15)
j=1

The (3 +d) x (3 4+ d) matrices I'*(R) form a finite group of
integral matrices I™*(K) for K equal to P, or to one of its
subgroups. A well known theorem in algebra states that then
there is a basis in 3 + d dimensions such that the matrices I™*(R)
on that basis are orthogonal and represent (3 + d)-dimensional
orthogonal transformations R,. The corresponding group is a
(3 + d)-dimensional crystallographic group denoted by K.
Because R is already an orthogonal transformation on V, R, is
reducible and can be expressed as a pair (R, R;) of orthogonal
transformations, in 3 and d dimensions, respectively. The basis
on which (R, R)) acts according to I™*(R) is denoted by {(a}, a})}.
It spans a lattice X* that is the reciprocal of the lattice X' with
basis elements (a;, a;). The pairs (R, R;), sometimes also noted
(Rg, R)), leave X invariant:

3+d
(R, R,)(a;, a;) = (Ra,, Rja;) = 21 I(R);(a;, a;), (9.8.4.16)
=

where I'(R) is the transpose of I'™(R™1).

In many cases, one can distinguish a lattice of main
reflections, the remaining reflections being called satellites.
The main reflections are generally more intense. Therefore,
main reflections are transformed into main reflections by

+ See footnote on p. 913.

elements of the Laue group. On a standard lattice basis
(9.8.4.13), the matrices I'(R) take the special form

_(Iw® 0
r (R)‘(Fﬁ(R) FI(R))‘

The transformation of main reflections and satellites is then given
by I'*(R) as in (9.8.4.15), the relation with I'(R) being (as
already said)

(9.8.4.17)

r"(R) = FR™),
where the tilde indicates transposition. Accordingly, on a
standard basis one has

*R) = (FZ(R) FL(R)). (9.8.4.18)

0 IR
The set of matrices I'g(R) for R elements of K forms a
crystallographic point group in three dimensions, denoted K,
having elements R of O(3), and the corresponding set of matrices
I';(R) forms one in d dimensions denoted by K, with elements R,
of O(d).
For a modulated crystal, one can choose the a; (i =1, 2, 3) of
a standard basis. These span the (reciprocal) lattice of the basic
structure. One can then express the additional vectors aj,;
(which are modulation wavevectors) in terms of the basis of the
lattice of main reflections:

3
a§‘+j:Zaﬁaj‘, j=1,2,....d. (9.8.4.19)
i=1

The three components of the jth row of the (d x 3)-dimensional
matrix o are just the three components of the jth modulation
wavevector ¢; = a3,; with respect to the basis aj, aj, a3. It is
easy to show that the internal components a; (i = 1, 2, 3) of the
corresponding dual standard basis can be expressed as

i=1,23. (9.8.4.20)

This follows directly from (9.8.4.19) and the definition of the
reciprocal standard basis (9.8.4.13). From (9.8.4.16) and
(9.8.4.17), a simple relation can be deduced between o and the
three constituents I'z(R), I';(R), and I"},(R) of the matrix I"(R):

—I',(R)o + 0T x(R) = I'y,(R). (9.8.4.21)

Notice that the elements of I",,(R) are integers, whereas o has, in
general, irrational entries. This requires that the irrational part of
o gives zero when inserted in the left-hand side of equation
(9.8.4.21). It is therefore possible to decompose formally o into
parts o' and o” as follows.

c=0 40, with o= ]lVZR: IR)oTR)™", (9.8.4.22)

where the sum is over all elements of the Laue group of order N.
It follows from this definition that

IR TR =0 (9.8.4.23)

This implies

I'y(R) = —T'(R)o" + " Tx(R). (9.8.4.24)

The matrix ¢” has rational entries and is called the rational part
of o. The part o' is called the irrational (or invariant) part.
The above equations simplify for the case d = 1. The elements
o,; = o; are the three components of the wavevector q, the row
matrix o I"z(R) has the components of R~'q and I'}(R) = ¢ = #1
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since, for d = 1, q can only be transformed into q. One has the
corresponding relations

i r : i 1
q=q +¢, WMI(1=N2;dm, (9.8.4.25)
and
Rq = q (modulo reciprocal lattice A*); Rq' = eq'.
(9.8.4.26)

The reciprocal-lattice vector that gives the difference between
Rq and eq has as components the elements of the row matrix
I'y(R).

9.8.4.2.2. Geometric and arithmetic crystal classes

According to the previous section, in the case of modulated
structures a standard basis can be chosen (for M* and
correspondingly for X*). According to equation (9.8.4.15),
for each three-dimensional point-group operation R that leaves
the diffraction pattern invariant, there is a point-group
transformation R in the external space (the physical one, so
that R; = R) and a point-group transformation R; in the internal
space, such that the pair (R,R;) is a (3 + d)-dimensional
orthogonal transformation R, leaving a (3 + d)-dimensional
lattice X invariant. For incommensurate crystals, this internal
transformation is unique and follows from the transformation
by R of the modulation wavevectors [see equations (9.8.4.15)
and (9.8.4.18) for the a} 4 basis vectors]: there is exactly one
R, for each R. This is so because in the incommensurate case
the correspondence between M* and X* is uniquely fixed by the
embedding rule (9.8.4.10) (see Subsection 9.8.4.1). Because
the matrices I'(R) and the corresponding transformations in the
(3 + d)-dimensional space form a group, this implies that there
is a mapping from the group K, of elements Ry to the group
K, of elements R, that transforms products into products, i.e.
is a group homomorphism. A point group K, of the (3 + d)-
dimensional lattice constructed for an incommensurate crystal,
therefore, consists of a three-dimensional crystallographic
point group K, a d-dimensional crystallographic point group
K,, and a homomorphism from K to X;.

Definition 2. Two (3 + d)-dimensional point groups K, and
K; are geometrically equivalent if they are connected by a pair
of orthogonal transformations (7, 7;) in V; and V,, respec-
tively, such that for every R, from the first group there is an
element R, of the second group such that R;T; = TzR; and
R T, = TiR;.

A point group determines a set of groups of matrices, one for
each standard basis of each lattice left invariant.

Definition 3. Two groups of matrices are arithmetically
equivalent if they are obtained from each other by a transforma-
tion from one standard basis to another standard basis.

The arithmetic equivalence class of a (3 + d)-dimensional
point group is fully determined by a three-dimensional point
group and a standard basis for the vector module M* because of
relation (9.8.4.15).

In three dimensions, there are 32 geometrically non-equivalent
point groups and 73 arithmetically non-equivalent point groups.
In one dimension, these numbers are both equal to two.
Therefore, one finds all (3 + 1)-dimensional point groups of
incommensurately modulated structures by considering all

triples of one of the 32 (or 73) point groups, for each one of
the two one-dimensional point groups and all homomorphisms
from the first to the second.

Analogously, in (3 + d) dimensions, one takes one of the 32
(73) groups, one of the d-dimensional groups, and all homo-
morphisms from the first to the second. If one takes all triples
of a three-dimensional group, a d-dimensional group, and a
homomorphism from the first to the second, one finds, in
general, groups that are equivalent. The equivalent ones still
have to be eliminated in order to arrive at a list of non-equivalent
groups.

9.8.4.3. Systems and Bravais classes
9.8.4.3.1. Holohedry

The Laue group of the diffraction pattern is a three-
dimensional point group that leaves the positions (and the
intensities)t of the diffraction spots as a set invariant, thus the
vector module M* also. As discussed in Subsection 9.8.4.2, each
of the elements of the Laue group can be combined with an
orthogonal transformation in the internal space. The resulting
point group in 3 + d dimensions leaves the lattice X* invariant
for which the vector module M* is the projection. Conversely, if
one has a point group that leaves the (3 + d)-dimensional lattice
invariant, its three-dimensional (external) part with elements
Ry = R leaves the vector module invariant.

Definition 4. The holohedry of the lattice X* is the subgroup of
the direct product O(3) x O(d), i.e. the group of all pairs of
orthogonal transformations R, = (R, R,) that leave the lattice
invariant.

This choice is possible because the point groups are reducible,
i.e. leave the subspaces V and V, of the direct sum space V,
invariant. In the case of an incommensurate crystal, the
projection of X* on M* is one-to-one as one can see as follows.
The vector

3 d
H, =3 hi(a;,0)+ > m(q;, d) (9.8.4.27)
i=1 j=1

of X" is projected on H=}_, ha; + > mq;. The vectors
projected on the null vector satisfy, therefore, the relation
> ha; + 3, mq; = 0. For an incommensurate phase, the basis
vectors are rationally independent, which means that #; = 0 and
m; = 0 for any i and j. Consequently, precisely one vector of X*
is projected on each given vector of M*.

Suppose now R = 1. This transformation leaves the compo-
nent of every vector belonging to X* in V invariant. If R, is the
corresponding orthogonal transformation in V; of an element R,
of the point group, a vector with component H; is transformed
into a vector with component H;. Since a given H is the
component of only one vector of X*, this implies H, = H;.
Consequently, R, is also the identity transformation. Therefore,
for incommensurate modulated phases, there are no point-group
elements with R=R; =1 and R, # 1. For commensurate
crystal structures embedded in the superspace, this is different:
point-group elements with internal component different from the
identity associated with an external component equal to unity can
occur.

For modulated crystal structures, the holohedral point group
can be expressed with respect to a lattice basis of standard form

+ See footnote on p. 913.
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