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9.8. INCOMMENSURATE AND COMMENSURATE MODULATED STRUCTURES

since, for d = 1, q can only be transformed into q. One has the
corresponding relations

i r : i 1
q=q +¢, WMI(1=N2;dm, (9.8.4.25)
and
Rq = q (modulo reciprocal lattice A*); Rq' = eq'.
(9.8.4.26)

The reciprocal-lattice vector that gives the difference between
Rq and eq has as components the elements of the row matrix
I'y(R).

9.8.4.2.2. Geometric and arithmetic crystal classes

According to the previous section, in the case of modulated
structures a standard basis can be chosen (for M* and
correspondingly for X*). According to equation (9.8.4.15),
for each three-dimensional point-group operation R that leaves
the diffraction pattern invariant, there is a point-group
transformation R in the external space (the physical one, so
that R; = R) and a point-group transformation R; in the internal
space, such that the pair (R,R;) is a (3 + d)-dimensional
orthogonal transformation R, leaving a (3 + d)-dimensional
lattice X invariant. For incommensurate crystals, this internal
transformation is unique and follows from the transformation
by R of the modulation wavevectors [see equations (9.8.4.15)
and (9.8.4.18) for the a} 4 basis vectors]: there is exactly one
R, for each R. This is so because in the incommensurate case
the correspondence between M* and X* is uniquely fixed by the
embedding rule (9.8.4.10) (see Subsection 9.8.4.1). Because
the matrices I'(R) and the corresponding transformations in the
(3 + d)-dimensional space form a group, this implies that there
is a mapping from the group K, of elements Ry to the group
K, of elements R, that transforms products into products, i.e.
is a group homomorphism. A point group K, of the (3 + d)-
dimensional lattice constructed for an incommensurate crystal,
therefore, consists of a three-dimensional crystallographic
point group K, a d-dimensional crystallographic point group
K,, and a homomorphism from K to X;.

Definition 2. Two (3 + d)-dimensional point groups K, and
K; are geometrically equivalent if they are connected by a pair
of orthogonal transformations (7, 7;) in V; and V,, respec-
tively, such that for every R, from the first group there is an
element R, of the second group such that R;T; = TzR; and
R T, = TiR;.

A point group determines a set of groups of matrices, one for
each standard basis of each lattice left invariant.

Definition 3. Two groups of matrices are arithmetically
equivalent if they are obtained from each other by a transforma-
tion from one standard basis to another standard basis.

The arithmetic equivalence class of a (3 + d)-dimensional
point group is fully determined by a three-dimensional point
group and a standard basis for the vector module M* because of
relation (9.8.4.15).

In three dimensions, there are 32 geometrically non-equivalent
point groups and 73 arithmetically non-equivalent point groups.
In one dimension, these numbers are both equal to two.
Therefore, one finds all (3 + 1)-dimensional point groups of
incommensurately modulated structures by considering all

triples of one of the 32 (or 73) point groups, for each one of
the two one-dimensional point groups and all homomorphisms
from the first to the second.

Analogously, in (3 + d) dimensions, one takes one of the 32
(73) groups, one of the d-dimensional groups, and all homo-
morphisms from the first to the second. If one takes all triples
of a three-dimensional group, a d-dimensional group, and a
homomorphism from the first to the second, one finds, in
general, groups that are equivalent. The equivalent ones still
have to be eliminated in order to arrive at a list of non-equivalent
groups.

9.8.4.3. Systems and Bravais classes
9.8.4.3.1. Holohedry

The Laue group of the diffraction pattern is a three-
dimensional point group that leaves the positions (and the
intensities)t of the diffraction spots as a set invariant, thus the
vector module M* also. As discussed in Subsection 9.8.4.2, each
of the elements of the Laue group can be combined with an
orthogonal transformation in the internal space. The resulting
point group in 3 + d dimensions leaves the lattice X* invariant
for which the vector module M* is the projection. Conversely, if
one has a point group that leaves the (3 + d)-dimensional lattice
invariant, its three-dimensional (external) part with elements
Ry = R leaves the vector module invariant.

Definition 4. The holohedry of the lattice X* is the subgroup of
the direct product O(3) x O(d), i.e. the group of all pairs of
orthogonal transformations R, = (R, R,) that leave the lattice
invariant.

This choice is possible because the point groups are reducible,
i.e. leave the subspaces V and V, of the direct sum space V,
invariant. In the case of an incommensurate crystal, the
projection of X* on M* is one-to-one as one can see as follows.
The vector

3 d
H, =3 hi(a;,0)+ > m(q;, d) (9.8.4.27)
i=1 j=1

of X" is projected on H=}_, ha; + > mq;. The vectors
projected on the null vector satisfy, therefore, the relation
> ha; + 3, mq; = 0. For an incommensurate phase, the basis
vectors are rationally independent, which means that #; = 0 and
m; = 0 for any i and j. Consequently, precisely one vector of X*
is projected on each given vector of M*.

Suppose now R = 1. This transformation leaves the compo-
nent of every vector belonging to X* in V invariant. If R, is the
corresponding orthogonal transformation in V; of an element R,
of the point group, a vector with component H; is transformed
into a vector with component H;. Since a given H is the
component of only one vector of X*, this implies H, = Hj.
Consequently, R, is also the identity transformation. Therefore,
for incommensurate modulated phases, there are no point-group
elements with R=R; =1 and R, # 1. For commensurate
crystal structures embedded in the superspace, this is different:
point-group elements with internal component different from the
identity associated with an external component equal to unity can
occur.

For modulated crystal structures, the holohedral point group
can be expressed with respect to a lattice basis of standard form

+ See footnote on p. 913.
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(9.8.4.13). It is then faithfully represented by integral matrices
that are of the form indicated in (9.8.4.17) and (9.8.4.18).

9.8.4.3.2. Crystallographic systems

Definition 5. A crystallographic system is a set of lattices
having geometrically equivalent holohedral point groups.

In this way, a given holohedral point group (and even each
crystallographic point group) belongs to exactly one system.
Two lattices belong to the same system if there are orthonormal
bases in V and in V,, respectively, such that the holohedral point
groups of the two lattices are represented by the same set of
matrices.

9.8.4.3.3. Bravais classes

Definition 6. Two lattices belong to the same Bravais class if
their holohedral point groups are arithmetically equivalent.

This means that each of them admits a lattice basis of standard
form such that their holohedral point group is represented by the
same set of integral matrices.

9.8.4.4. Superspace groups
9.8.4.4.1. Symmetry elements

The elements of a (3 + d)-dimensional superspace group are
pairs of Euclidean transformations in 3 and d dimensions,
respectively:

g = ({RIV}, {R;lv;}) € E(3) x E(d), (9.8.4.28)

i.e. are elements of the direct product of the corresponding
Euclidean groups. The elements {R|v} form a three-dimensional
space group, but the same does not hold for the elements {R,|v,}
of E(d). This is because the internal translations v; also contain
the ‘compensating’ transformations associated with the corre-
sponding translation v in V [see (9.8.4.32)]. In other words, a
basis of the lattice X' does not simply split into one basis for V
and one for V.

As for elements of a three-dimensional space group, the
translational component v, = (v, v;) of the element g, can be
decomposed into an intrinsic part v¢ and an origin-dependent
part v4:

(v,07) = (v, v]) + (v*, ),
with

n

1
H’ o J— Rm ’Rm ,
(V¥ =D (R™V.R'v))

m=1

(9.8.4.29)

where n denotes the order of the element R. In particular, for
d =1 the intrinsic part v{ of v; is equal to v; if R, = ¢ = +1 and
vanishes if ¢ = —1. The latter means that for d =1 there is
always an origin in the internal space such that the internal shift
v, can be chosen to be zero for an element with ¢ = —1.

The internal part of the intrinsic translation can itself be
decomposed into two parts. One part stems from the presence of
a translation in the external space. The lattice of the (3 + d)-
dimensional space group has basis vectors

according to equation (9.8.4.20). The three-dimensional transla-
tion v =), v;a, then entails a d-dimensional translation —Av in
V, given by

3 3
Av=A (Z viai> =Y v,Aa,.
i=1 i=1

These are the so-called compensating translations. Hence, the
internal translation v; can be decomposed as

v, = —AvV +9,

where 6 = Z}i:l vs,,d;.

This decomposition, however, does still depend on the origin.
Consider the case d = 1. Then an origin shift s in the three-
dimensional space changes the translation v to v 4 (1 — R)s and
its internal part —Av=—q-v to —q-v—q- (1 —R)s. This
implies that for the case that ¢ =1 the part § changes to
8+q-(1-R)s=68+q" - (1 —R)s, because ¢ is invariant under
R. Therefore, § changes, in general. The internal translation

(9.8.4.34)

(9.8.4.32)

(9.8.4.33)

T=86—q v,

however, is invariant under an origin shift in V.

Definition 1. Equivalent superspace groups. Two superspace
groups are equivalent if they are isomorphic and have point
groups that are arithmetically equivalent.

Another definition leading to the same partition of equivalent
superspace groups considers equivalency with respect to affine
transformations among bases of standard form.

This means that two equivalent superspace groups admit
standard bases such that the two space groups are represented
by the same set of (4 + d)-dimensional affine transformation
matrices. We recall that an n-dimensional Euclidean transforma-
tion g, = {R,|v,} if referred to a basis of the space can be
represented isomorphically by an (n + 1)-dimensional matrix, of

the form
R. v,
A(gj) = ( (:)‘S 13)

with R, an n X n matrix and v, an n-dimensional column matrix,
all with real entries.

(9.8.4.35)

9.8.4.4.2. Equivalent positions and modulation relations

A (3 4+ d)-dimensional space group that leaves a function
invariant maps points in (3 + d)-space to points where the
function has the same value. The atomic positions of a modulated
crystal represent such a pattern, and the superspace group
leaving the crystal invariant leads to a partition into equivalent
atomic positions. These relations can be formulated either in
(3 + d)-dimensional space or, equally well, in three-dimensional
space. As a simple case, we first consider a crystal with a one-
dimensional occupation modulation: this implies d = 1. Again,
as in §9.8.1.3.2, we omit to indicate the basis vectors d, and dj
and give only the corresponding components.

An element of the (3 + 1)-dimensional superspace group is a
pair

8 = (RIv}, {elv}) (9.8.4.36)

(a;, a;),0,d), i=1,2,3, j=1,...,d. (9.8.4.30) of Euclidean transformations in V and V;, respectively. This
. . . element maps a point located at r, = (r, ) to one at (Rr +V,
The internal part of the first three basis vectors is st + v;). Suppose the probability for the position n +r; to be
d occupied by an atom of species A is given by
a; = —Aa, = — Zaﬁdj (9.8.4.31) )
& Pin.j,0) = pjla- (m+1)+1] (9.8.437)
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