International Tables for Crystallography (2006). Vol. C, Section 9.8.5, pp. 941-943.

9.8. INCOMMENSURATE AND COMMENSURATE MODULATED STRUCTURES

where p;(x) = p;(x + 1). By g,, the position n + r; is transformed
to the equivalent position n’ +r;, = Rn + Rr; +v. As the crystal
is left invariant by the superspace group, the occupation
probability on equivalent points has to be the same:

P, j' ) = P,n,j, &(t — v))]. (9.8.4.38)

This implies that for the structure in the three-dimensional space
one has the relation

P,',j’,0) = P,n,j, —cv,). (9.8.4.39)
In terms of the modulation function p; this means
pilg- (' +1;)] =plq- (m+1)) — eyl (9.8.4.40)

In the same way, one derives the following property of the
modulation function:

pj/(x) = p;le(x —8) + K- (r;, —v)], where Rq =¢q+K.

(9.8.4.41)

Analogously, for a displacive modulation, the position n+r;
with displacement u,(z,), where 7, = q - (n +1;), is transformed

to n’ + r;, with displacement

u; (1) = Ruy(1, — evy). (9.8.4.42)

To be invariant, the displacement function has to satisfy the
relation

u;(x) = Rujlex — &5 + K- (r;; —v)], where Rq = eq + K.

(9.8.4.43)

The expressions for d > 1 are straightforward generalizations of
these.

9.8.4.4.3. Structure factor

The scattering from a set of atoms at positions r, is described
in the kinematic approximation by the structure factor:

Su=> f,(H)expriH - r,), (9.8.4.44)

where f,(H) is the atomic scattering factor. For an incommensu-
rate crystal phase, this structure factor Sy is equal to the
structure factor Sy of the crystal structure embedded in 3 +d
dimensions, where H is the projection of H, on V. This
structure factor is expressed by a sum of the products of atomic
scattering factors f, and phase factors exp(2nwiH, - r,,) over all
particles in the unit cell of the higher-dimensional lattice. For an
incommensurate phase, the number of particles in such a unit cell
is infinite: for a given atom in space, the embedded positions
form a dense set on lines or hypersurfaces of the higher-
dimensional space. Disregarding pathological cases, the sum
may be replaced by an integral. Including the possibility of an
occupation modulation, the structure factor becomes (up to a
normalization factor)

Sp = ZA: Zg dth(H)PAj(t)

x exp{2ni(H, H)) - [r; + u(t), t]}, (9.8.4.45)

where the first sum is over the different species, the second over
the positions in the unit cell of the basic structure, the integral
over a unit cell of the lattice spanned by d, ..., d; in V,; f, is the
atomic scattering factor of species A, P(t) is the probability of
atom j being of species A when the internal position is t.

In particular, for a given atomic species, without occupational
modulation and a sinusoidal one-dimensional displacive modula-
tion

P()=1; w@) =U;sin2n(q-r; + 1+ ¢)]. (9.8.4.46)
According to (9.8.4.45), the structure factor is
1
Sy = [ dtf,(H) exp(2niH - r;) exp(2mimt)
i o
x exp[27iH - U; sin 27(q - r; + 1 + ¢;)]. (9.8.4.47)

For a diffraction vector H = K + mq, this reduces to

Sq = Z f(H) exp(2miK - 1;)J_,,(27H - U;)

X exp(—2mimg;). (9.8.4.48)

For a general one-dimensional modulation with occupation
modulation function p;(r) and displacement function w;(?), the
structure factor becomes

Su = Zfl’ dr f,(H)p,(q - 1; + 1 + ;) exp[27i(H - x; + mr)]
Jj o

x exp[2mwiH - w(q - r; + 1 + ¢)]. (9.8.4.49)

Because of the periodicity of p;(r) and w;(#), one can expand the
Fourier series:

pi(q -1+t + ;) exp2miH - wi(q - 1; + 1 + ¢)]

=3 C,,(H) exp[27ik(q - ¥; + 1)), (9.8.4.50)
k

and consequently the structure factor becomes
Sp = > (M) exp27iK - 1))C; _,(H), where H= K+ mq.
J

(9.8.4.51)

The diffraction from incommensurate crystal structures has been
treated by de Wolff (1974), Yamamoto (1982a,b), Paciorek &
Kucharczyk (1985), Petricek, Coppens & Becker (1985),
Petricek & Coppens (1988), Perez-Mato et al. (1986, 1987),
and Steurer (1987).

9.8.5. Generalizations
9.8.5.1. Incommensurate composite crystal structures

The basic structure of a modulated crystal does not always
have space-group symmetry. Consider, for example, composite
crystals (also called intergrowth crystals). Disregarding modula-
tions, one can describe these crystals as composed of a finite
number of subsystems, each with its own space-group symmetry.
The lattices of these subsystems can be mutually incommensu-
rate. In that case, the overall symmetry is not a space group, the
composite crystal is incommensurate and so also is its basic
structure. The superspace approach can also be applied to such
crystals. Let the subsystems be labelled by an index v. For the
subsystem v, we denote the lattice by A, with basis vectors a,;
(i=1,2,3), its reciprocal lattice by A; with basis vectors aZ;
(i=1,2,3), and the space group by G,. The atomic positions of
the basic structure are given by

n,+r,, 9.8.5.1
v vj (

where n,, is a lattice vector belonging to A, . In the special case
that the subsystems are mutually commensurate, there are three
basis vectors a*, b*, ¢* such that all vectors a; are integral linear
combinations of them. In general, however, more than three
basis vectors are needed, but never more than three times the
number of subsystems. Suppose that the vectors aj (i =1, ..., n)
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form a basis set such that every a’

*. can be expressed as an
integral linear combination of them:

*
Vi

a), => Zja;, Z integers, (9.8.5.2)
k=1

with n =344, and d, > 0. Then the vectors of the diffraction

pattern of the unmodulated system are again of the form

(9.8.4.5) and generate a vector module M} of dimension three

and rank (3 +d,), which can be considered as projection of a

(3 + d,)-dimensional lattice X7.

We now assume that one can choose aj; =0 fori = 1,2, 3 and
we denote ap,; by d;. This corresponds to assuming the
existence of a subset of Bragg reflections at the positions of a
three-dimensional reciprocal lattice A*. Then there is a standard
basis for the lattice X',, which is the reciprocal of X7, given by

(a,a;), (0,d), i=123 j=1,....d. (9.8523)

-
In order to find the (3 + d,)-dimensional periodic structure for
which this composite crystal is the three-dimensional intersec-
tion, one associates with a translation t in the internal space V;
three-dimensional independent shifts, one for each subsystem.
These shifts of the subsystems replace the phase shifts adopted
for the modulated structures: V, is now the space of the variable
relative positions of the subsystems. Again, a translation in the
superspace can give rise to a non-Euclidean transformation in the
three-dimensional space of the crystal, because of the variation
in the relative positions among subsystems. Each subsystem,
however, is rigidly translated. For the basis vectors dj, the shift
of the subsystem v is defined in terms of projection operators 7,
3
m,d; = Z: Zhga,, j=1,....d, (9.8.5.4)
=
Then an arbitrary translation t = ZJ- t;d; in V, displaces the
subsystem v over a vector ZJ. ti(m,d;). A translation (a, a; + d)
belonging to the (3 + d,)-dimensional lattice X', induces for the
subsystem v in ordinary space a relative translation over vector
a+ m,(a; + d). The statement is that this translation is a vector
of the lattice A, and leaves therefore the subsystem v invariant.
So the lattice translations belonging to X, form a group of
symmetry operations for the composite crystal as a whole.
The proof is as follows. If k belongs to A%, the vector (k, k,)
belongs to X7. In particular, for k = a};, one has, because of
(9.8.5.2) and (9.8.5.4),

ay, -md =25, j=1,....4d, (9.8.5.5)

and

dO
k, =) 74 d° and therefore k;-d; =Z};,;.
j=1
Note that one has k; -t =k -« t, for any t from V, as 7, is a
linear operator. Because of the linearity, this holds for every k
from A} as well. Since (k, k;) belongs to X% and (a, a, + d) to
X ,, one has for their inner product:

k-a+k;-a,+k,-d=k-(a+m,a,+7,d) =0 (modulo 1),

which implies that a + m,a; 4+ m,d is an element of A,,.

In conclusion, one may state that the composite structure is the
intersection with the ordinary space (t = 0) of a pattern having
atomic position vectors given by

(m, +r,; —mt t) foranytof V, (9.8.5.6)

Such a pattern is invariant under the (3 + d,)-dimensional lattice
X . Again, orthogonal transformations R of O(3) leaving the
vector module M invariant can be extended to orthogonal

transformation R, of O(3) x O(d,) allowing a Euclidean structure
to be given to the superspace. One can then consider the
superspace-group symmetry of the basic structure defined by
atomic positions as in (9.8.5.6). A superspace-group element g,
as in (9.8.4.28) induces (in three-dimensional space) for the
subsystem v the transformation

g :m,+r,; — Rn, +Rr, +v+ Rm R 'v,, (9.8.5.7)

vj
changing the position n, +r,; into an equivalent one of the
composite structure, not necessarily, however, within the same
subsystem v.

Finally, the composite structure can also be modulated. For
the case of a one-dimensional modulation of each subsystem v,
the positions are

n, + rl/j + uuj[qu : (ny + r;/j')]~ (9858)

Possibly the modulation vectors can also be expressed as integral
linear combinations of the af (i=1,...,3+d,). Then, the
dimension of V, is again d,. In general, however, one has to
consider (d —d,) additional vectors, in order to ensure the
validity of (9.8.4.5), now for n = 3 + d. We can then write

3+4d
q, =, O/a;, QO integers. (9.8.5.9)
j=1

The peaks of the diffraction pattern are at positions defined by a
vector module M*, which can be considered as the projection of
a (3 + d)-dimensional lattice X*, the reciprocal of which leaves
invariant the pattern of the modulated atomic positions in the
superspace given by

{nu + rl/j - T[l/t + uz/j[qu : (nu + rz/j - T[yt) + 4 - t]v t}’

for any t of V, (9.8.5.10)

with 7,d; = 0 for j > d,, where q,, is the internal part of the
(3 + d)-dimensional vector that projects on q,. Their symmetry
is a (3 4 d)-dimensional superspace group G,. The transforma-
tion induced in the modulated composite crystal by an element
under g, of G, is now readily written down. For the case
d=d,=1 and g, = ({R|v}, {¢]A}), the position n,+r,; is
transformed into

R(n, +r,)+ v+ eRm, Ad,, (9.8.5.11)

and the modulation u,[q, - (n, +r,)] into
Ruyj[qy ! (nV + ruj + 87[1/Ad1) —é&qy, - Adl]

This shows how the superspace-group approach can be applied
to a composite (modulated) structure. Note that composite
systems do not necessarily have an invariant set of (main)
reflections at lattice positions.

9.8.5.2. The incommensurate versus the commensurate case

As said earlier, it sometimes makes sense also to use the
description as developed for incommensurate crystal phases for a
(commensurate) superstructure. In fact, very often the modula-
tion wavevector also shows, in addition to continuously varying
(incommensurate) values, several rational values at various
phase transitions of a given crystal or in different compounds of a
given structural family. In these cases, there is three-dimensional
space-group symmetry. Generally, the space groups of the
various phases are different. The description as used for
incommensurate phases then gives the possibility of a more
unified characterization for the symmetry of related modulated
crystal phases. In fact, the theory of higher-dimensional space
groups for modulated structures is largely independent of the
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assumption of irrationality. Only some of the statements need to
be adapted. The most important change is that there is no longer
a one-to-one correspondence between the points of the reciprocal
lattice X* and its projection on V defining the positions of the
Bragg peaks. Furthermore, the projection of the lattice X on the
space V, forms a discrete set. The latter means the following. For
an incommensurate modulation, the incommensurate structure,
which is the intersection of a periodic structure with the
hyperplane r; = 0, is also the intersection of the same periodic
structure with a hyperplane r, = constant, where this constant is
of the form
3
(9.8.5.12)

1

d
ha; + > mays ;.
1 j=1

Because for an incommensurate structure these vectors form a
dense set in V,, the phase of the modulation function with respect
to the basic structure is not determined. For a commensurate
modulation, however, the points (9.8.5.12) form a discrete set,
even belong to a lattice, and the phase (or the phases) of the
modulation are determined within vectors of this lattice. Notice
that the grid of this lattice becomes finer as the denominators in
the rational components become larger.

When G, is a (3 + d)-dimensional superspace group, its
elements, in general, do not leave the ordinary space V
invariant. The subgroup of all elements that do leave V
invariant, when restricted to V, is a group of distance-preserving
transformations in three dimensions and thus a subgroup of E(3),
the three-dimensional Euclidean group. In general, this subgroup
is not a three-dimensional space group. It is so when the
modulation wavevectors all have rational components only, i.e.
when o is a matrix with rational entries. Because the phase of the
modulation function is now determined (within a given rational
number smaller than 1), the space group depends in general on
this phase.

As an example, consider a one-dimensional modulation of a
basic structure with orthorhombic space group Pcmn. Suppose
that the modulation wavevector is yc*. Then the mirror R = m,
perpendicular to the ¢ axis is combined with R, =¢ = —1.
Suppose, furthermore, that the glide reflection perpendicular to
the a axis and the b mirror are both combined with a phase shift
%. In terms of the coordinates x, y, z with respect to the a, b and ¢
axes, and internal coordinate ¢, the generators of the (3 + 1)-
dimensional superspace group Pcmn(00y)ssO act as

x,y,2,t) > (x+k,y+ 1L, z+mt —ym+n),

k,l, m, n integers, (9.8.5.13a)

(x,.2.1)
— (—x+k+3,y+lLz+i+mt—y/2—ym+3i+n),
(9.8.5.13b)

xy.z,0) > (x+k —y+Il+i z4+mt—ym+1i+n),

(9.8.5.13¢)
(x,y,2, 1)
- x+i+ky+i+L —z4+5+m —t—y/2—ym+n).
(9.8.5.13d)

Note that these positions are referred to a split basis (i.e. of basis
vectors lying either in V or in V;) and not to a basis of the lattice
Y. When the superstructure is the intersection of a periodic
structure with the plane at ¢t = ¢, its three-dimensional space
group follows from equation (9.8.5.13) by the requirement

¢ =t,. When y has the rational value r/s with r and s relatively
prime, the conditions for each of the generators to give an
element of the three-dimensional space group are, respectively:

—rm+sn=0 (9.8.5.14a)
—2rm+2sn=r—s (9.8.5.14b)
—2rm+2sn = —s (9.8.5.14¢)
—2rm + 2sn = 4st, (9.8.5.14d)

for m,n, r,s integers and ¢ real. These conditions are never
satisfied simultaneously. It depends on the parity of both r and s
which element occurs, and for the elements with ¢ = —1 it also
depends on the value of the ‘phase’ ¢, or more precisely on the
product T = 4st. The translation group is determined by the first
condition as in (9.8.5.14a). Its generators are

a, b, and sc,

where the last vector is the external part of the lattice vector
s(c, —r/s) + r(0,1). The other space-group elements can be
derived in the same way. The possible space groups are:

y=r/s T even integer t odd integer otherwise
21
r even, s odd 11 " 2,2,2, 112,
2,
r odd, s even 1?1 2,cn 1cl
2
r odd, s odd ?11 c2\n cll

In general, the three-dimensional space groups compatible with a
given (3 + d)-dimensional superspace group can be determined
using analogous equations.

As one can see from the table above, the orthorhombic
(3 + d)-dimensional superspace group leads in several cases to
monoclinic three-dimensional space groups. The lattice of main
reflections, however, still has orthorhombic point-group sym-
metry. Description in the conventional way by means of three-
dimensional groups then neglects some of the structural features
present. Even if the orthorhombic symmetry is slightly broken,
the orthorhombic basic structure is a better characterization than
a monoclinic one. Note that in that case the superspace-group
symmetry is also only an approximation.

When the denominators of the wavevector components
become small, additional symmetry operations become possible.
Because the one-to-one correspondence between X* and M* is no
longer present, there may occur symmetry elements with trivial
action in V but with nontrivial transformation in V;. For d =1,
these possibilities have been enumerated. The corresponding
Bravais classes are given in Table 9.8.3.2(b).

APPENDIX A
Glossary of symbols
M* Vector module in m-dimensional reciprocal space
(m=1,2,3; normally m = 3), isomorphic to Z" with

n > m. The dimension of M* is m, its rank n.

a’ (i=1,...,n.) Basis of a vector module M* of rank n;
if n =4 and q is modulation wavevector (the n =4
case is restricted in what follows to modulated
crystals), the basis of M* is chosen as a*, b*, ¢*, q,
with a*, b*, ¢* a basis of the lattice of main reflections.
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