
1.1. INTRODUCTION TO THE PROPERTIES OF TENSORS

If the basis ei is orthonormal, �ðgkmÞ and V are equal to one,
�ðBjÞ is equal to the volume V 0 of the cell built on the basis
vectors e0i and

�ðg0
ijÞ ¼ V 02:

This relation is actually general and one can remove the prime
index:

�ðgijÞ ¼ V2: ð1:1:2:21Þ

In the same way, we have for the corresponding reciprocal
basis

�ðgijÞ ¼ V�2;

where V� is the volume of the reciprocal cell. Since the tables of
the gij’s and of the gij’s are inverse, so are their determinants, and
therefore the volumes of the unit cells of the direct and reciprocal
spaces are also inverse, which is a very well known result in
crystallography.

1.1.3. Mathematical notion of tensor

1.1.3.1. Definition of a tensor

For the mathematical definition of tensors, the reader may
consult, for instance, Lichnerowicz (1947), Schwartz (1975) or
Sands (1995).

1.1.3.1.1. Linear forms

A linear form in the space En is written

TðxÞ ¼ tix
i;

where TðxÞ is independent of the chosen basis and the ti’s are the
coordinates of T in the dual basis. Let us consider now a bilinear
form in the product space En � Fp of two vector spaces with n
and p dimensions, respectively:

Tðx; yÞ ¼ tijx
iy j:

The np quantities tij’s are, by definition, the components of a
tensor of rank 2 and the form Tðx; yÞ is invariant if one changes
the basis in the space En � Fp. The tensor tij is said to be twice
covariant. It is also possible to construct a bilinear form by
replacing the spaces En and Fp by their respective conjugates En

and Fp. Thus, one writes

Tðx; yÞ ¼ tijx
iy j ¼ t

j
ix

iyj ¼ t i
jxiy

j ¼ tijxiyj;

where tij is the doubly contravariant form of the tensor, whereas
t

j
i and ti

j are mixed, once covariant and once contravariant.
We can generalize by defining in the same way tensors of rank

3 or higher by using trilinear or multilinear forms. A vector is a
tensor of rank 1, and a scalar is a tensor of rank 0.

1.1.3.1.2. Tensor product

Let us consider two vector spaces, En with n dimensions and Fp

with p dimensions, and let there be two linear forms, TðxÞ in En

and SðyÞ in Fp. We shall associate with these forms a bilinear form
called a tensor product which belongs to the product space with
np dimensions, En � Fp:

Pðx; yÞ ¼ TðxÞ � SðyÞ:

This correspondence possesses the following properties:
(i) it is distributive from the right and from the left;
(ii) it is associative for multiplication by a scalar;
(iii) the tensor products of the vectors with a basis En and those

with a basis Fp constitute a basis of the product space.
The analytical expression of the tensor product is then

TðxÞ ¼ tix
j

SðyÞ ¼ sjy
i

�
Pðx; yÞ ¼ pijx

iy j ¼ tix
isjy

j ¼ tisjx
iy j:

One deduces from this that

pij ¼ tisj:

It is a tensor of rank 2. One can equally well envisage the
tensor product of more than two spaces, for example,
En � Fp � Gq in npq dimensions. We shall limit ourselves in this
study to the case of affine tensors, which are defined in a space
constructed from the product of the space En with itself or with its
conjugate En. Thus, a tensor product of rank 3 will have n3

components. The tensor product can be generalized as the
product of multilinear forms. One can write, for example,

Pðx; y; zÞ ¼ Tðx; yÞ � SðzÞ

p
j
ikxiyjz

k ¼ t
j
ix

iyjskzk:

�
ð1:1:3:1Þ

1.1.3.2. Behaviour under a change of basis

A multilinear form is, by definition, invariant under a change
of basis. Let us consider, for example, the trilinear form (1.1.3.1).
If we change the system of coordinates, the components of
vectors x, y, z become

xi ¼ Bi
�x0�; yj ¼ A

�
j y0�; zk ¼ Bk

�z0� :

Let us put these expressions into the trilinear form (1.1.3.1):

Pðx; y; zÞ ¼ p
j
ikBi

�x0�A
�
j y0�Bk

�z0� :

Now we can equally well make the components of the tensor
appear in the new basis:

Pðx; y; zÞ ¼ p0�
��x0�y0

�z0� :

As the decomposition is unique, one obtains

p0�
�� ¼ p

j
ikBi

�A
�
j Bk

� : ð1:1:3:2Þ

One thus deduces the rule for transforming the components of
a tensor q times covariant and r times contravariant: they
transform like the product of q covariant components and r
contravariant components.

This transformation rule can be taken inversely as the defini-
tion of the components of a tensor of rank n ¼ q þ r.

Example. The operator O representing a symmetry operation has
the character of a tensor. In fact, under a change of basis, O
transforms into O0:

O0 ¼ AOA�1

so that

O0i
j ¼ Ai

kOk
l ðA

�1Þ
l
j:

Now the matrices A and B are inverses of one another:

O0i
j ¼ Ai

kOk
l Bl

j:

The symmetry operator is a tensor of rank 2, once covariant and
once contravariant.

1.1.3.3. Operations on tensors

1.1.3.3.1. Addition

It is necessary that the tensors are of the same nature (same
rank and same variance).
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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

1.1.3.3.2. Multiplication by a scalar

This is a particular case of the tensor product.

1.1.3.3.3. Contracted product, contraction

Here we are concerned with an operation that only exists in the
case of tensors and that is very important because of its appli-
cations in physics. In practice, it is almost always the case that
tensors enter into physics through the intermediary of a
contracted product.

(i) Contraction. Let us consider a tensor of rank 2 that is once
covariant and once contravariant. Let us write its transformation
in a change of coordinate system:

t
0j
i ¼ A j

pB
q
i t p

q:

Now consider the quantity t0ii derived by applying the Einstein
convention ðt0ii ¼ t011 þ t022 þ t033 Þ. It follows that

t0ii ¼ Ai
pB

q
i t p

q ¼ �q
pt q

q

t0ii ¼ t p
p:

This is an invariant quantity and so is a scalar. This operation
can be carried out on any tensor of rank higher than or equal to
two, provided that it is expressed in a form such that its
components are (at least) once covariant and once contravariant.

The contraction consists therefore of equalizing a covariant
index and a contravariant index, and then in summing over this
index. Let us take, for example, the tensor t

0jk
i . Its contracted form

is t0iki , which, with a change of basis, becomes

t0iki ¼ Ak
pt qp

q :

The components t ik
i are those of a vector, resulting from the

contraction of the tensor t
jk
i . The rank of the tensor has changed

from 3 to 1. In a general manner, the contraction reduces the rank
of the tensor from n to n � 2.

Example. Let us take again the operator of symmetry O. The
trace of the associated matrix is equal to

O1
1 þ O2

2 þ O3
3 ¼ Oi

i:

It is the resultant of the contraction of the tensor O. It is a tensor
of rank 0, which is a scalar and is invariant under a change of
basis.

(ii) Contracted product. Consider the product of two tensors of
which one is contravariant at least once and the other covariant
at least once:

p
jk
i ¼ t

j
iz

k:

If we contract the indices i and k, it follows that

p
ji
i ¼ t

j
iz

i:

The contracted product is then a tensor of rank 1 and not 3. It
is an operation that is very frequent in practice.

(iii) Scalar product. Next consider the tensor product of two
vectors:

t
j
i ¼ xiy

j:

After contraction, we get the scalar product:

t i
i ¼ xiy

i:

1.1.3.4. Tensor nature of physical quantities

Let us first consider the dielectric constant. In the introduction,
we remarked that for an isotropic medium

D ¼ "E:

If the medium is anisotropic, we have, for one of the compo-
nents,

D1 ¼ "1
1E1 þ "1

2E2 þ "1
3E3:

This relation and the equivalent ones for the other components
can also be written

Di ¼ "i
jE

j ð1:1:3:3Þ

using the Einstein convention.
The scalar product of D by an arbitrary vector x is

Dixi ¼ "i
jE

jxi:

The right-hand member of this relation is a bilinear form that is
invariant under a change of basis. The set of nine quantities "i

j

constitutes therefore the set of components of a tensor of rank 2.
Expression (1.1.3.3) is the contracted product of "i

j by E j.
A similar demonstration may be used to show the tensor

nature of the various physical properties described in Section
1.1.1, whatever the rank of the tensor. Let us for instance
consider the piezoelectric effect (see Section 1.1.4.4.3). The
components of the electric polarization, Pi, which appear in a
medium submitted to a stress represented by the second-rank
tensor Tjk are

P i ¼ d ijkTjk;

where the tensor nature of Tjk will be shown in Section 1.3.2. If
we take the contracted product of both sides of this equation by
any vector of covariant components xi, we obtain a linear form on
the left-hand side, and a trilinear form on the right-hand side,
which shows that the coefficients d ijk are the components of a
third-rank tensor. Let us now consider the piezo-optic (or
photoelastic) effect (see Sections 1.1.4.10.5 and 1.6.7). The
components of the variation ��ij of the dielectric impermeability
due to an applied stress are

��ij ¼ �ijklTjl:

In a similar fashion, consider the contracted product of both
sides of this relation by two vectors of covariant components xi

and yj, respectively. We obtain a bilinear form on the left-hand
side, and a quadrilinear form on the right-hand side, showing that
the coefficients �ijkl are the components of a fourth-rank tensor.

1.1.3.5. Representation surface of a tensor

1.1.3.5.1. Definition

Let us consider a tensor tijkl... represented in an orthonormal
frame where variance is not important. The value of component
t01111... in an arbitrary direction is given by

t01111... ¼ tijkl...B
i
1B

j
1Bk

1Bl
1 . . . ;

where the Bi
1, B

j
1; . . . are the direction cosines of that direction

with respect to the axes of the orthonormal frame.
The representation surface of the tensor is the polar plot of

t01111....

1.1.3.5.2. Representation surfaces of second-rank tensors

The representation surfaces of second-rank tensors are
quadrics. The directions of their principal axes are obtained as
follows. Let tij be a second-rank tensor and let OM ¼ r be a
vector with coordinates xi. The doubly contracted product, tijx

ix j,
is a scalar. The locus of points M such that
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tijx
ix j ¼ 1

is a quadric. Its principal axes are along the directions of the
eigenvectors of the matrix with elements tij. They are solutions of
the set of equations

tijx
i ¼ �x j;

where the associated quantities � are the eigenvalues.
Let us take as axes the principal axes. The equation of the

quadric reduces to

t11ðx
1Þ

2
þ t22ðx

2Þ
2
þ t33ðx

3Þ
2
¼ 1:

If the eigenvalues are all of the same sign, the quadric is an
ellipsoid; if two are positive and one is negative, the quadric is a
hyperboloid with one sheet; if one is positive and two are nega-
tive, the quadric is a hyperboloid with two sheets (see Section
1.3.1).

Associated quadrics are very useful for the geometric repre-
sentation of physical properties characterized by a tensor of rank
2, as shown by the following examples:

(i) Index of refraction of a medium. It is related to the dielectric
constant by n ¼ "1=2 and, like it, it is a tensor of rank 2. Its
associated quadric is an ellipsoid, the optical indicatrix, which
represents its variations with the direction in space (see Section
1.6.3.2).

(ii) Thermal expansion. If one cuts a sphere in a medium whose
thermal expansion is anisotropic, and if one changes the
temperature, the sphere becomes an ellipsoid. Thermal expan-
sion is therefore represented by a tensor of rank 2 (see Chapter
1.4).

(iii) Thermal conductivity. Let us place a drop of wax on a plate
of gypsum, and then apply a hot point at the centre. There
appears a halo where the wax has melted: it is elliptical, indicating
anisotropic conduction. Thermal conductivity is represented by a
tensor of rank 2 and the elliptical halo of molten wax corresponds
to the intersection of the associated ellipsoid with the plane of the
plate of gypsum.

1.1.3.5.3. Representation surfaces of higher-rank tensors

Examples of representation surfaces of higher-rank tensors are
given in Sections 1.3.3.4.4 and 1.9.4.2.

1.1.3.6. Change of variance of the components of a tensor

1.1.3.6.1. Tensor nature of the metric tensor

Equation (1.1.2.17) describing the behaviour of the quantities
gij ¼ ei � ej under a change of basis shows that they are the
components of a tensor of rank 2, the metric tensor. In the same
way, equation (1.1.2.19) shows that the gij’s transform under a
change of basis like the product of two contravariant coordinates.
The coefficients gij and gij are the components of a unique tensor,
in one case doubly contravariant, in the other case doubly
covariant. In a general way, the Euclidean tensors (constructed in
a space where one has defined the scalar product) are geome-
trical entities that can have covariant, contravariant or mixed
components.

1.1.3.6.2. How to change the variance of the components of a
tensor

Let us take a tensor product

t ij ¼ xiy j:

We know that

xi ¼ gikxk and y j ¼ g jlyl:

It follows that

t ij ¼ gikg jlxkyl:

xkyl is a tensor product of two vectors expressed in the dual
space:

xkyl ¼ tkl:

One can thus pass from the doubly covariant form to the
doubly contravariant form of the tensor by means of the relation

t ij ¼ gikg jltkl:

This result is general: to change the variance of a tensor (in
practice, to raise or lower an index), it is necessary to make the
contracted product of this tensor using gij or gij, according to the
case. For instance,

tl
k ¼ g jltlk; t

ij
k ¼ gklt

ijl:

Remark

gi
j ¼ gikgkj ¼ �i

j:

This is a property of the metric tensor.

1.1.3.6.3. Examples of the use in physics of different
representations of the same quantity

Let us consider, for example, the force, F, which is a tensor
quantity (tensor of rank 1). One can define it:

(i) by the fundamental law of dynamics:

F ¼ mC; with Fi ¼ m d2xi=dt2;

where m is the mass and C is the acceleration. The force appears
here in a contravariant form.

(ii) as the derivative of the energy, W:

Fi ¼ @W=@xi ¼ @iW:

The force appears here in covariant form. In effect, we shall see
in Section 1.1.3.8.1 that to form a derivative with respect to a
variable contravariant augments the covariance by unity. The
general expression of the law of dynamics is therefore written
with the energy as follows:

m d2xi=dt2 ¼ gij@jW:

1.1.3.7. Outer product

1.1.3.7.1. Definition

The tensor defined by

x
^

y ¼ x � y � y � x

is called the outer product of vectors x and y. (Note: The symbol is
different from the symbol ^ for the vector product.) The analy-
tical expression of this tensor of rank 2 is

x ¼ xiei

y ¼ y jej

�
¼) x

^
y ¼ ðxiy j � yix jÞ ei � ej:

The components pij ¼ xiy j � yix j of this tensor satisfy the
properties

pij ¼ �p ji; pii ¼ 0:

It is an antisymmetric tensor of rank 2.

9



1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

1.1.3.7.2. Vector product

Consider the so-called permutation tensor of rank 3 (it is
actually an axial tensor – see Section 1.1.4.5.3) defined by

"ijk ¼ þ1 if the permutation ijk is even

"ijk ¼ �1 if the permutation ijk is odd

"ijk ¼ 0 if at least two of the three indices are equal

8<
:

and let us form the contracted product

zk ¼ 1
2 "ijkpij ¼ "ijkxiyj: ð1:1:3:4Þ

It is easy to check that

z1 ¼ x2y3 � y2x3

z2 ¼ x3y1 � y3x1

z3 ¼ x1y2 � y2x1:

8<
:

One recognizes the coordinates of the vector product.

1.1.3.7.3. Properties of the vector product

Expression (1.1.3.4) of the vector product shows that it is of a
covariant nature. This is indeed correct, and it is well known that
the vector product of two vectors of the direct lattice is a vector of
the reciprocal lattice [see Section 1.1.4 of Volume B of Interna-
tional Tables for Crystallography (2000)].

The vector product is a very particular vector which it is better
not to call a vector: sometimes it is called a pseudovector or an
axial vector in contrast to normal vectors or polar vectors. The
components of the vector product are the independent compo-
nents of the antisymmetric tensor pij. In the space of n dimen-
sions, one would write

vi3i4...in
¼ 1

2 "i1i2...in
pi1i2 :

The number of independent components of pij is equal to
ðn2 � nÞ=2 or 3 in the space of three dimensions and 6 in the space
of four dimensions, and the independent components of pij are
not the components of a vector in the space of four dimensions.

Let us also consider the behaviour of the vector product under
the change of axes represented by the matrix

�11 0 0

0 �11 0

0 0 �11

0
@

1
A:

This is a symmetry with respect to a point that transforms a
right-handed set of axes into a left-handed set and reciprocally. In
such a change, the components of a normal vector change sign.
Those of the vector product, on the contrary, remain unchanged,
indicating – as one well knows – that the orientation of the vector
product has changed and that it is not, therefore, a vector in the
normal sense, i.e. independent of the system of axes.

1.1.3.8. Tensor derivatives

1.1.3.8.1. Interpretation of the coefficients of the matrix – change
of coordinates

We have under a change of axes:

x0i ¼ Ai
jx

j:

This shows that the new components, x0i, can be considered linear
functions of the old components, x j, and one can write

Ai
j ¼ @x0i=@x j ¼ @jx

0i:

It should be noted that the covariance has been increased.

1.1.3.8.2. Generalization

Consider a field of tensors t
j
i that are functions of space vari-

ables. In a change of coordinate system, one has

t
j
i ¼ A�

i B
j
�t0�� :

Differentiate with respect to xk:

@t
j
i

@xk
¼ @kt

j
i ¼ A�

i B
j
�

@t0��
@x0�

@x0�

@xk

@kt
j
i ¼ A�

i B
j
�A

�
k@� t0�� :

It can be seen that the partial derivatives @kt
j
i behave under a

change of axes like a tensor of rank 3 whose covariance has been
increased by 1 with respect to that of the tensor t

j
i. It is therefore

possible to introduce a tensor of rank 1, rrr (nabla), of which the
components are the operators given by the partial derivatives
@=@xi.

1.1.3.8.3. Differential operators

If one applies the operator nabla to a scalar ’, one obtains

grad ’ ¼ rrr’:

This is a covariant vector in reciprocal space.
Now let us form the tensor product of rrr by a vector v of

variable components. We then have

rrr � v ¼
@v j

@xi
ei � e j:

The quantities @iv
j form a tensor of rank 2. If we contract it, we

obtain the divergence of v:

div v ¼ @iv
i:

Taking the vector product, we get

curl v ¼ rrr ^ v:

The curl is then an axial vector.

1.1.3.8.4. Development of a vector function in a Taylor series

Let uðrÞ be a vector function. Its development as a Taylor series
is written

uiðr þ drÞ ¼ uiðrÞ þ
@ui

@xj
dx j þ 1

2

@2ui

@xj@xk
dx j dxk þ . . . : ð1:1:3:5Þ

The coefficients of the expansion, @ui=@x j, @2ui=@x j@xk; . . . are
tensors of rank 2; 3; . . ..

An example is given by the relation between displacement and
electric field:

Di ¼ "i
jE

j þ �i
jkE jEk þ . . .

(see Sections 1.6.2 and 1.7.2).
We see that the linear relation usually employed is in reality a

development that is arrested at the first term. The second term
corresponds to nonlinear optics. In general, it is very small but is
not negligible in ferroelectric crystals in the neighbourhood of
the ferroelectric–paraelectric transition. Nonlinear optics are
studied in Chapter 1.7.

1.1.4. Symmetry properties

For the symmetry properties of the tensors used in physics, the
reader may also consult Bhagavantam (1966), Billings (1969),
Mason (1966), Nowick (1995), Nye (1985), Paufler (1986),
Shuvalov (1988), Sirotin & Shaskol’skaya (1982), and Wooster
(1973).
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