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and, consequently, this representation has a trivial factor system.
This shows that, although 32d has three extra representations,
there are no nontrivial projective representations.

The characters for the double point groups are given in Table
1.2.6.7.

1.2.3. Space groups

1.2.3.1. Structure of space groups

The Euclidean group E(n) in n dimensions is the group of all
distance-preserving inhomogeneous linear transformations. In
Euclidean space, an element is denoted by

g ¼ fRjag

where R 2 OðnÞ and a is an n-dimensional translation. On a point
r in n-dimensional space, g acts according to

fRjagr ¼ Rr þ a: ð1:2:3:1Þ

Therefore, jgr1 � gr2j ¼ jr1 � r2j. The group multiplication law is
given by

fRjagfR0ja0g ¼ fRR0ja þ Ra0g: ð1:2:3:2Þ

The elements fEjag form an Abelian subgroup, the group of n-
dimensional translations T(n).

An n-dimensional space group is a subgroup of E(n) such that
its intersection with T(n) is generated by n linearly independent
basis translations. This means that this lattice translation subgroup
A is isomorphic to the group of n-tuples of integers: each trans-
lation in A can be written as

fEjag ¼
Qn

i¼1

fEjeig
ni ¼ fEj

Pn

i¼1

nieig: ð1:2:3:3Þ

The lattice translation subgroup A is an invariant subgroup
because

gfEjagg�1 ¼ fRjbgfEjagfRjbg�1
¼ fEjRag 2 A:

The factor group G=A, of the space group G and the lattice
translation group A, is isomorphic to the group K formed by all
elements R occurring in the elements fRjag 2 G. This group is the
point group of the space group G. It is a subgroup of O(n).

The unit cell of the space group is a domain in n-dimensional
space such that every point in space differs by a lattice translation
from some point in the unit cell, and such that between any two
points in the unit cell the difference is not a lattice translation.
The unit cell is not unique. One choice is the n-dimensional
parallelepiped spanned by the n basis vectors. The points in this
unit cell have coordinates between 0 (inclusive) and 1. Another
choice is not basis dependent: consider all points generated by
the lattice translation group from an origin. This produces a
lattice of points �. Consider now all points that are closer to the
origin than to any other lattice point. This domain is a unit cell, if
one takes care which part of the boundary belongs to it and which
part not, and is called the Wigner–Seitz cell. In mathematics it is
called the Voronoi cell or Dirichlet domain (or region).

Because the point group leaves the lattice of points invariant,
it transforms the Wigner–Seitz cell into itself. This implies that
points inside the unit cell may be related by a point-group
element. Similarly, space-group elements may connect points
inside the unit cell, up to lattice translations. A fundamental
region or asymmetric unit is a part of the unit cell such that no
points of the fundamental region are connected by a space-group
element, and simultaneously that any point in space can be
related to a point in the fundamental region by a space-group
transformation.

Because fEjRag belongs to the lattice translation group for
every R 2 K and every lattice translation fEjag, the lattice �
generated by the vectors ei (i ¼ 1; 2; . . . ; n) is invariant under the
point group K. Therefore, the latter is a crystallographic point
group. On a basis of the lattice �, the point group corresponds to
a group �ðKÞ of integer matrices. One has the following situation.
The space group G has an invariant subgroup A isomorphic to Z

n,
the factor group G=A is a crystallographic point group K which
acts according to the integer representation �ðKÞ on A. In
mathematical terms, G is an extension of K by A with homo-
morphism � from K to the group of automorphisms of A.

The vectors a occurring in the elements fEjag 2 G are called
primitive translations. They have integer coefficients with respect
to the basis e1; . . . ; en. However, not all vectors a in the space-
group elements are necessarily primitive. One can decompose the
space group G according to

G ¼ A þ g2A þ g3A þ . . .þ gNA: ð1:2:3:4Þ

To every element R 2 K there is a coset giA with gi ¼ fRjaðRÞg as
representative. Such a representative is unique up to a lattice
translation. Instead of aðRÞ, one could as well have aðRÞ þ n as
representative for any lattice translation n. For a particular
choice, the function aðRÞ from the point group to the group T(n)
is called the system of nonprimitive translations or translation
vector system. It is a mapping from the point group K to TðnÞ,
modulo A. Such a system of nonprimitive translations satisfies the
relations

aðRÞ þ RaðSÞ ¼ aðRSÞ mod A 8 R; S 2 K: ð1:2:3:5Þ

This follows immediately from the product of two representatives
gi.

If the lattice translation subgroup A acts on a point r different
from the origin, one obtains the set �þ r. One can describe the
elements of G as well as combinations of an orthogonal trans-
formation with r as centre and a translation. This can be seen
from

fRjag ¼ fEja � r þ RrgfRjr � Rrg; ð1:2:3:6Þ

where now fRjr � Rrg leaves the point r invariant. The new
system of nonprimitive translations is given by

a0ðRÞ ¼ aðRÞ þ ðR � EÞr: ð1:2:3:7Þ

This is the effect of a change of origin. Therefore, for a space
group, the systems of nonprimitive translations are only deter-
mined up to a primitive translation and up to a change of origin.

It is often convenient to describe a space group on another
basis, the conventional lattice basis. This is the basis for a
sublattice with the same, or higher, symmetry and with the same
number of free parameters. Therefore, the sublattice is also
invariant under K and with respect to the conventional basis,
which is obtained from the original one via a basis transformation
S, the point group has the form

�conventionalðRÞ ¼ S�primitiveðRÞS
�1; ð1:2:3:8Þ

where S is the centring matrix. It is a matrix with determinant
equal to the inverse of the number of lattice points of the
primitive lattice inside the unit cell of the conventional lattice. As
an example, consider the primitive and centred rectangular
lattices in two dimensions. Both have symmetry 2mm, and two
parameters a and b. The transformation from a basis of the
conventional lattice [(2a; 0) and (0; 2b)] to a basis of the primitive
lattice [(a;�b) and (a; b)] is given by S, and the relations between
the generators of the point groups are
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1.2.3.2. Irreducible representations of lattice translation groups

The lattice translation group A is isomorphic to the group Z
n of

n-tuples of integers. This is an infinite group and, therefore, the
usual techniques for finite groups cannot be applied. A way past
this is the following. If ai are the basis vectors of the lattice �, the
lattice translation group generated by the translations fEjNaig

forms an Abelian subgroup AN of A. The factor group A=AN is a
finite group isomorphic to the direct product of n cyclic groups of
order N. Each representation of this group is a representation of
A with the property that the elements of AN are represented by
the unit operator. This procedure is in fact that of periodic
boundary conditions in solid-state physics. In the following, we
shall consider only the representations of A that satisfy this
condition.

The irreducible representations of the direct product of n cyclic
groups of order N are all one-dimensional. According to Section
1.2.2.6 they can be characterized by n integers and read

�fpjg fEj
Pn

i¼1

nieig

� �

¼ exp½2�iðn1p1 þ n2p2 þ . . .þ nnpnÞ=N�;

ð1:2:3:9Þ

because a representation of the cyclic group CN is determined by
its value on the basis translations:

�pðfEjegÞ ¼ expð2�ip=NÞ; 0 � p<N:

There are exactly Nn nonequivalent irreducible representations.
If ai are basis vectors of the lattice �, its dual basis consists of

vectors bj defined by

ai � bj ¼ 2��ij: ð1:2:3:10Þ

These vectors bj span the reciprocal lattice ��. The scalar product
of an arbitrary lattice vector a and a reciprocal-lattice vector K is
then

K � a ¼

�
Pn

i¼1

mibi

�

�

�
Pn

j¼1

njaj

�

¼ 2�
Pn

i¼1

nimi: ð1:2:3:11Þ

The expression (1.2.3.9) then can be written more concisely if one
introduces an n-dimensional vector k:

k ¼ ð1=NÞ
Pn

i¼1

pibi: ð1:2:3:12Þ

Then (1.2.3.9) simplifies to

�fkgðfEjagÞ ¼ expðik � aÞ: ð1:2:3:13Þ

Because 0 � pi=N< 1, the vector k belongs to the unit cell of the
reciprocal lattice. If one chooses that unit cell as the Voronoi cell
for the reciprocal lattice, which in direct space would be the
Wigner–Seitz cell, it is called the Brillouin zone. Therefore,
representations of the lattice translation subgroup are char-
acterized by a vector in the Brillouin zone. In fact, the vectors k
form a mesh inside the Brillouin zone, but this mesh becomes
finer if N increases. In the limit of N going to 1, the wavevectors
k fill the Brillouin zone.

Just like the direct lattice, the reciprocal lattice is invariant
under the point group K. The Brillouin zone, or at least its
interior, is invariant under K as well. A fundamental domain in
the Brillouin zone is a part of the zone such that no two points of

the fundamental region are related by a point-group transfor-
mation from K and that any point in the Brillouin zone can be
obtained from a point in the fundamental region by a point-group
transformation.

1.2.3.3. Irreducible representations of space groups

For representations of space groups, we use the same argu-
mentation as for the lattice translation subgroup. Notice that the
group AN generated by the vectors fEjNeig is an invariant
Abelian subgroup of the space group G as well.

fRjagfEjNeigfR
�1j � R�1ag ¼ fEjNReig 2 AN:

The factor group G=AN is a finite group of order Nn times the
order of the point group K. Representations of this factor group
are representations of G with the property that all elements of
AN are mapped on the unit operator. We shall consider here only
such space-group representations.

Suppose that �ðGÞ is an irreducible representation of the space
group G. Its restriction �ðAÞ to the lattice translation subgroup is
then reducible, unless it is one-dimensional. Each irreducible
representation of A is characterized by a vector k in the Brillouin
zone. Therefore,

�ðfEjagÞ

¼

expðik1 � aÞ 0 0 . . . 0 0

0 expðik2 � aÞ 0 . . . 0 0

0 0 expðik3 � aÞ . . . 0 0

0 0 0 . . . . . . 0

0 0 0 . . . 0 expðikn � aÞ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

ð1:2:3:14Þ

Some of the vectors ki may be identical. Therefore, the matrix
representation can be written as

�ðfEjagÞ

¼

expðik1 � aÞE 0 0 . . . 0 0

0 expðik2 � aÞE 0 . . . 0 0

0 0 expðik3 � aÞE . . . 0 0

0 0 0 . . . 0 0

0 0 0 . . . 0 expðiks � aÞE

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

ð1:2:3:15Þ

It can be shown that the dimensions of the unit matrices E are all
the same (and equal to d). Then

n ¼ s � d:

With respect to the basis on which the translation is of this form,
every basis vector in the pth block is multiplied by a factor
expðikp � aÞ.

Suppose that fRjug is an element of the space group G.
Consider a basis vector v of the representation space that gets a
factor expðik � aÞ under the translation fEjag. Then one has

DðfEjagÞv ¼ expðik � aÞv

DðfEjagÞDðfRjugÞv ¼ DðfRjugÞDðfEjR�1agÞv

¼ expðiRk � aÞDðfRjugÞv;

and because DðfRjugÞv also belongs to the representation space
there are vectors that transform with the vector Rk as well as
vectors that transform with k. This means that for every vector k
occurring in a block in (1.2.3.5), there is also a block for each
vector Rk as R runs over the point group K. The vectors
fRkjR 2 Kg form the star of k. Vectors Rk that differ by a reci-
procal-lattice vector (k0 ¼ k þ K with K 2 ��) correspond to the
same representation and are therefore considered to be the same.
Generally, a vector k may be left invariant by a subgroup of the
point group K. This point group Kk is the point group of k.
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Kk � fRjRk � k mod ��g: ð1:2:3:16Þ

Then there are s point-group elements Ri such that

K ¼ Kk [ R2Kk [ . . . [ RsKk ð1:2:3:17Þ

and each element Ri corresponds to a vector in the star:

ki ¼ Rik1; k1 ¼ k; i ¼ 1; 2; . . . ; s:

Therefore, the blocks in (1.2.3.15) for an irreducible repre-
sentation of the space group G correspond to the s branches of
the star of k. They are all of the same dimension d. If the vectors
ki in (1.2.3.15) belonged to two or more different stars, the
representation would be reducible.

To the point group of k corresponds a subgroup of the space
group G that has Kk as point group. It is called the group of k and
is defined by

Gk � fg ¼ fRjag 2 GjR 2 Kkg: ð1:2:3:18Þ

Analogously to (1.2.3.17), one can write

G ¼ Gk [ g2Gk [ . . . [ gsGk ð1:2:3:19Þ

for elements gi ¼ fRijaig of the space group G.
As one sees from (1.2.3.15), there is a subspace of vectors v

that get a factor expðik � a) for any lattice translation a. If one
considers the action of DðgÞ with g 2 Gk, it follows immediately
that a vector from this space is transformed into a vector of the
same space: the subspace corresponding to a vector k is invariant
under Gk. Therefore this space Vk carries a representation of Gk.
It can be seen as follows that one may construct the irreducible
representation of the whole group G as soon as one knows the
representation Dk of Gk in Vk. To that end, consider a basis
e1; . . . ; ed in Vk. The vectors

wi� ¼ DðgiÞe� ði ¼ 1; 2; . . . ; s; � ¼ 1; 2; . . . ; dÞ; ð1:2:3:20Þ

form a basis of the whole representation space. Under a lattice-
translation vector a, the vector wi� gets a factor expðiki � aÞ. On
this basis, one can determine the matrix representation �ðGÞ.
Take an element fRjug 2 G. It belongs to a certain coset gmGk in
the decomposition of G. In addition, the element fRjuggi belongs
to a well defined gjGk. This means that there is an element fSjvg
in the group Gk such that

fRjuggi ¼ gjfSjvg ði ¼ 1; 2; . . . ; s; fSjvg 2 GkÞ:

Then one can write

DðfRjugÞ i� ¼ DðfRjugÞDðgiÞe�

¼ DðgjÞD fSjvgð Þe�

¼ DðgjÞ
Pd

�¼1

�k fSjvgð Þ��e�

¼
Pd

�¼1

�k fSjvgð Þ�� j�

¼
Ps

j¼1

Pd

�¼1

� fRjugð Þj�;i� j�:

This means that the representation matrix �ðfRjugÞ can be
decomposed into s � s blocks of dimension d. In each row of
blocks there is exactly one that is not a block of zeros, and the
same is true for each column of blocks. Moreover, the only
nonzero block in the ith column and in the jth row is

DkðfSjvgÞ ¼ Dkðg
�1
j fRjuggiÞ; ð1:2:3:21Þ

where i and j are uniquely related by

fRjuggi 2 gjGk: ð1:2:3:22Þ

It can be shown that �ðGÞ is irreducible if and only if DkðGkÞ is
irreducible. From the construction, it is obvious that one may
obtain all irreducible representations of G in this way. Moreover,
one obtains all representations of G if one takes for the
construction all stars and for each star all irreducible repre-
sentations of Gk.

So the final step is to determine all nonequivalent irreducible
representations of Gk. Notice that the lattice translation
subgroup is a subgroup of Gk. Therefore,

DkðfEjagÞ ¼ expðik � aÞE:

If one makes a choice for the system of nonprimitive translations
uðRÞ, every element g ¼ fSjvg 2 Gk can be written uniquely as

g ¼ fEjagfSjuðSÞg;

for a lattice translation a. Therefore, one has

DkðfSjvgÞ ¼ expðik � aÞDkðfSjuðSÞgÞ � expfik � ½a þ uðSÞ�g�ðSÞ

ð1:2:3:23Þ

if one defines

�ðSÞ ¼ exp½�ik � uðSÞ�DkðfSjuðSÞgÞ: ð1:2:3:24Þ

It is important to notice that this definition of � does not depend
on the choice of the system of nonprimitive translations. If one
takes u0ðSÞ ¼ uðSÞ þ b (b 2 A), the result for �ðSÞ is the same.
The product of two matrices �ðSÞ and �ðS0Þ then becomes

�ðSÞ�ðS0Þ ¼ exp �ik � ½uðSÞ þ uðS0Þ�
� �

DkðfSS0juðSÞ þ SuðS0ÞgÞ

¼ exp �ik � ½uðS0Þ � SuðS0Þ�
� �

�ðSS0Þ: ð1:2:3:25Þ

One sees that the matrices �ðRÞ form a projective representation
of the point group of k. The factor system is given by

!ðS; S0Þ ¼ expf�ik � ½uðS0Þ � SuðS0Þ�g

¼ exp½�iðk � S�1Þ � uðS0Þ�: ð1:2:3:26Þ

Such a factor system may, however, be equivalent to a trivial one.
If the space group Gk is symmorphic, one may choose the

system of nonprimitive translations to be zero. Consequently, in
this case the factor system !ðS; S0Þ is unity and the matrices �ðSÞ
form an ordinary representation of the space group Gk. This is
also the case if k is not on the Brillouin-zone boundary. If k is
inside the Brillouin zone and S 2 Kk, one has Sk ¼ k þ K only
for K ¼ 0. So inside the Brillouin zone one has Sk ¼ k for all
S 2 Kk. This implies that

expf�ik � ½uðS0Þ � SuðS0Þ�g ¼ exp½�iðk � S�1kÞ � uðS0Þ� ¼ 1:

A nontrivial factor system !ðS; S0Þ can therefore only occur for a
nonsymmorphic group Gk and for a k on the Brillouin-zone
boundary. But even then, it is possible that one may redefine the
matrices �ðSÞ with an appropriate phase factor such that they
form an ordinary representation. This is, for example, always the
case if Kk is cyclic, because cyclic groups do not have genuine
projective representations. These are always associated with an
ordinary representation.

If the factor system !ðS; S0Þ is not associated with a trivial one,
one has to find the irreducible projective representations with the
given factor system. As seen in the previous section, one may do
this by using the defining relation for the point group Kk. If these
are words WiðA1; . . . ;ArÞ in the generators A1; . . . ;Ar, the
corresponding expressions in the representation

WiðDkðA1Þ; . . . ;DkðArÞÞ ¼ �iE

are multiples of the unit operator. The values of �i fix the class of
the factor system completely. By multiplying the operators
DkðAjÞ by proper phase factors, the values of �i can be trans-
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formed into those tabulated. Then the tables give all irreducible
representations for this factor system.

In summary, the procedure for finding all irreducible repre-
sentations of a space group G is as follows.

(1) Consider all stars of k with respect to G. This means that
one takes all vectors k in a fundamental region of the Brillouin
zone.

(2) For each star, one determines the group Kk.
(3) For each Kk, one determines the factor system !ðS; S0Þ.
(4) For this factor system, one looks for all nonequivalent

irreducible (projective) representations.
(5) From the representations DkðKkÞ, one determines the

representations �kðGkÞ and �ðGÞ according to the procedure
given above.

1.2.3.4. Characterization of space-group representations

The irreducible representations of space groups are char-
acterized by a star of vectors in the Brillouin zone, and by the
irreducible, possibly projective, representations of the point
group of one point from that star.

The stars are sets of vectors in the Brillouin zone related
mutually by transformations from the point group K of the space
group G modulo reciprocal-lattice vectors. To obtain all stars, it is
sufficient to take all vectors in the fundamental domain of the
Brillouin zone, i.e. a part of the Brillouin zone such that no
vectors in the domain are related by point-group elements
(modulo ��) and such that every point in the Brillouin zone is
related to a vector in the fundamental domain by a point-group
operation.

From each star one takes one point k and determines the
nonequivalent irreducible representations of the point group Kk,
the ordinary representations if the group Gk is symmorphic or k
is inside the Brillouin zone, or the projective representations with
factor system ! [equation (1.2.3.26)] otherwise. These repre-

sentations are labelled �. There are several conventions for the
choice of this label, but an irreducible representation of G is
always characterized by a pair (k; �Þ, where k fixes the star and �
the irreducible point-group representation.

The projective representations of the group of k, i.e. of Kk, can
be obtained from the ordinary representations of a larger group.
If the factor system !ðR;R0Þ is of order m, the order of this larger
group K̂Kk! is m times the order of Kk. Then the irreducible
representations of the space group are labelled by the vector k in
the Brillouin zone and an irreducible ordinary representation of
K̂Kk!, where ! follows from (1.2.3.26).

Two stars such that one branch of the first one has the same Kk

as one branch of the other determine representations that are
quite similar. The only difference is the numerical value of the
factors expðik � aÞ, the form of the representation matrices being
the same. Such irreducible representations of the space group are
said to belong to the same stratum. Strata are denoted by a
symbol for one vector k in the Brillouin zone. For example, the
origin, conventionally denoted by �, belongs to one stratum that
corresponds to the ordinary representations of the point group K.
For a simple cubic space group, the point [1

2; 0; 0] is denoted by X.
Its Kk is the tetragonal group 4=mmm. All points [�; 0; 0] with
� 6¼ 0 and �1

2<�<
1
2 form one stratum with point group 4mm.

This stratum is denoted by � etc. The strata can be compared with
the Wyckoff positions in direct space. There a Wyckoff position is
a manifold in the unit cell for which all points have the same site
symmetry, modulo the lattice translations. Here it is a manifold of
k vectors with the same symmetry group modulo the reciprocal
lattice. The action of Gk does not involve the nonprimitive
translations. Therefore, the strata correspond to Wyckoff posi-
tions of the corresponding symmorphic space group. The stratum
symbols for the various three-dimensional Bravais classes are
given in Table 1.2.6.11.

As an example, we consider here the orthorhombic space
group Pnma. The orthorhombic Brillouin zone has a fundamental
domain with volume that is one-eighth of that of the Brillouin
zone. The various choices of k in this fundamental domain,
together with the corresponding point groups Kk, are given in
Table 1.2.3.1. The vectors k correspond to Wyckoff positions of
the group Pmmm.

In the tables, the vectors k and their corresponding Wyckoff
positions are given for the holohedral space groups. In general,
the number of different strata is smaller for the other groups. One
can still use the same symbols for these groups, or take the
symbols for the Wyckoff positions for the groups that are not
holohedral. Consider as an example the group Pmm2. Its holo-
hedral space group is Pmmm. The strata of irreducible repre-
sentations can be labelled by the symbols for Wyckoff positions
of Pmm2 as well as those of Pmmm. This is shown in Table 1.2.3.2.

The defining relations for the point group mmm are

A2 ¼ B2 ¼ ðABÞ
2
¼ C2 ¼ E; AC ¼ CA; BC ¼ CB:
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Table 1.2.3.1. Choices of k in the fundamental domain of Pnma and the
elements of Kk

k
Wyckoff
position Kk Elements

000 a mmm E mx my mz
�11 2x 2y 2z

1
200 b mmm E mx my mz

�11 2x 2y 2z

01
20 e mmm E mx my mz

�11 2x 2y 2z

001
2 c mmm E mx my mz

�11 2x 2y 2z

01
2

1
2 g mmm E mx my mz

�11 2x 2y 2z

1
2 0 1

2 d mmm E mx my mz
�11 2x 2y 2z

1
2

1
2 0 f mmm E mx my mz

�11 2x 2y 2z

1
2

1
2

1
2 h mmm E mx my mz

�11 2x 2y 2z

�00 i 2mm E my mz 2x

� 1
2 0 k 2mm E my mz 2x

�0 1
2 j 2mm E my mz 2x

� 1
2

1
2 l 2mm E my mz 2x

0�0 m m2m E mx mz 2y

1
2 �0 o m2m E mx mz 2y

0� 1
2 n m2m E mx mz 2y

1
2 �

1
2 p m2m E mx mz 2y

00� q mm2 E mx my 2z

1
2 0� s mm2 E mx my 2z

0 1
2 � r mm2 E mx my 2z

1
2

1
2 � t mm2 E mx my 2z

0�� u m11 E mx

1
2 �� v m11 E mx

�0� w 1m1 E my

� 1
2 � x 1m1 E my

��0 y 11m E mz

�� 1
2 z 11m E mz

��� 	 1 E

Table 1.2.3.2. Strata of irreducible representations of Pmm2 and Pmmm

k

Wyckoff
position
in Pmm2

Wyckoff
positions
in Pmmm Kk

00� a a; c; q mm2

0 1
2 � b e; g; r mm2

1
2 0� c b; d; s mm2
1
2

1
2 � d f ; h; t mm2

�0� e i; j;w 1m1

� 1
2 � f k; l; x 1m1

0�� g m; n; u m11
1
2 �� h o; p; v m11

��� i y; z; 	 1



1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

For the subgroups, the defining relations follow from these. The
corresponding expressions in the representation matrices �ðAiÞ

for the generators of the point groups give expressions

W left
i ðA1; . . . ;ArÞ ¼ �iW

right
i ðA1; . . . ;ArÞ; i ¼ 1; . . . :

In the example one has

�ðAÞ
2
¼ �1E �ðBÞ2

¼ �2E

�ðAÞ�ðBÞð Þ
2
¼ �3E �ðCÞ

2
¼ �4E

�ðAÞ�ðCÞ ¼ �5�ðCÞ�ðAÞ �ðBÞ�ðCÞ ¼ �6�ðCÞ�ðBÞ:

The values for �i characterize the projective representation factor
system and are given in Table 1.2.3.3. They are unity for ordinary
representations.

By putting factors i in front of the representation matrices in
the appropriate places, some of the values of �i can be changed
from �1 to þ1. In this way, one obtains either ordinary repre-
sentations, which are necessarily one-dimensional for these
Abelian groups, or projective representations, which are in this
case two-dimensional. This is indicated as well in Table 1.2.3.3.
The one-dimensional irreducible representations are ordinary
representations of the group Kk. The two-dimensional ones are
projective representations, but correspond to ordinary repre-
sentations of the larger groups isomorphic to D4 � C2 and D4.

1.2.3.5. Double space groups and their representations

In Section 1.2.2.9, it was mentioned that the transformation
properties of spin-1

2 particles under rotations are not given by the
orthogonal group O(3), but by the covering group SU(2). Hence,
the transformation of a spinor field under a Euclidean transfor-
mation g is given by

g�ðrÞ ¼ �UðRÞ�ðR�1ðr � aÞÞ 8 g ¼ fRjag 2 Eð3Þ; ð1:2:3:27Þ

where the SU(2) operator UðRÞ is given by

UðRÞ ¼ E cosð’=2Þ þ ðr � nÞ sinð’=2Þ

ð1:2:3:28Þ

when the rotation R has angle ’ and axis
n. When R does not belong to SO(3) one
has to take Uð�R).

For an ordinary space group, one can
construct the double space group by

fRjag ! f�UðRÞjag ð1:2:3:29Þ

with multiplication rule

fUðRÞjagfUðSÞjbg ¼ fUðRÞUðSÞja þ Rbg:

ð1:2:3:30Þ

An invariant subgroup of the double
space group is the translation group A.
The factor group is the double point
group Kd of the point group K.

The representations of the double
space groups can be constructed in the
same way as those of ordinary space
groups. They are characterized by a
vector k in the Brillouin zone and a label
for an irreducible, generally projective,
representation of the (double) point
group Kd

k of k, which is the double group
of Kk. Again, for nonsymmorphic space
groups or wavevectors k inside the Bril-
louin zone, the relevant irreducible
representations of Kd

k are ordinary
representations with a trivial factor
system.

For an element g of the space group G, there are two elements
of the double space group Gd. If one considers an irreducible
representation DðGdÞ for the double space group and takes for
each g 2 G one of the two corresponding elements in Gd, the
resulting set of linear operators forms a projective representation
of the space group. It is also characterized by a vector k in the
Brillouin zone and a projective representation of the point group
(not its double) Kk. This projective representation does not have
the same factor system as discussed in Section 1.2.3.3, because the
factor system now stems partly from the nonprimitive transla-
tions and partly from the fact that a double point group gives a
projective representation of the ordinary point group Kk.

The projective representations of a space group corresponding
to ordinary representations of the double space group again are
characterized by the star of a vector k. The projective repre-
sentation of the group Gk then is given by

PkðfRjagÞ ¼ expðik � aÞ�ðRÞ; ð1:2:3:31Þ

where the projective representation �ðKkÞ has the factor system

�ðRÞ�ðSÞ ¼ !sðR; SÞ exp½�iðk � R�1kÞ � aðSÞ��ðRSÞ

¼ !ðR; SÞ�ðRSÞ; ð1:2:3:32Þ

where !s is the spin factor system for Kk and aðSÞ is the
nonprimitive translation of the space-group element with
orthogonal part S. The factor system ! can be characterized by
the defining relations of Kk. If these are the words

WiðA1; . . . ;ApÞ ¼ E;

then the factor system ! is characterized by the factors �i in

Wið�ðA1Þ; . . . ;�ðApÞÞ ¼ �iE: ð1:2:3:33Þ
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Table 1.2.3.3. Characteristic values of �i for the projective irreps of Kk for the point group mmm

k
A2 B2 ðABÞ

2
C2 AC ¼ CA BC ¼ CB Representations

�1 �2 �3 �4 �5 �6 Number Dimension

000 1 1 1 1 1 1 8 1
1
200 �1 1 �1 1 �1 1 2 2

01
20 1 �1 1 1 1 1 2 2

001
2 1 1 1 �1 �1 1 2 2

01
2

1
2 1 �1 1 �1 �1 1 2 2

1
2 0 1

2 �1 1 �1 �1 1 1 8 1
1
2

1
2 0 �1 �1 �1 1 �1 1 2 2

1
2

1
2

1
2 �1 �1 �1 �1 1 1 2 2

�00 1 1 1 4 1

� 1
2 0 �1 1 �1 4 1

�0 1
2 1 �1 �1 4 1

� 1
2

1
2 �1 �1 1 4 1

0�0 1 1 1 4 1
1
2 �0 �1 1 1 1 2

0� 1
2 1 �1 1 1 2

1
2 �

1
2 �1 �1 1 4 1

00� 1 1 1 4 1
1
2 0� �1 1 �1 1 2

0 1
2 � 1 �1 1 1 2

1
2

1
2 � �1 �1 �1 1 2

0�� 1 2 1
1
2 �� �1 2 1

�0� 1 2 1

� 1
2 � �1 2 1

��0 1 2 1

�� 1
2 �1 2 1

��� 1 1



1.2. REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS

The factors �i are the product of the values found from the spin
factor system !s and those corresponding to the factor system for
an ordinary representation [equation (1.2.3.26)].

1.2.4. Tensors

1.2.4.1. Transformation properties of tensors

A vector is an element of an N-dimensional vector space that
transforms under an orthogonal transformation, an element of
Oðn), as

x ¼
Pn

i¼1

�iai ! x0 ¼
Pn

i¼1

�0iai ¼
P

ij

Rij�jai; fRijg 2 OðnÞ:

A tensor of rank r under OðnÞ is an object with components Ti1...ir
(ij ¼ 1; 2; . . . ; n) that transforms as (see Section 1.1.3.2)

Ti1...ir
! T 0

i1...ir
¼

Pn

j1¼1

. . .
Pn

jr¼1

Ri1 j1
. . .Rirjr

Tj1...jr
:

A rank-zero tensor is a scalar, which is invariant under OðnÞ. A
pseudovector (or axial vector) has components xi and transforms
according to

xi ! x0i ¼ DetðRÞ
P

j

Rij�j

and analogously for pseudotensors (or axial tensors – see Section
1.1.4.5.3).

A vector field is a vector-valued function in n-dimensional
space. Under an orthogonal transformation it transforms
according to

FiðrÞ
0
¼

Pn

j¼1

RijFjðR
�1rÞ: ð1:2:4:1Þ

Under a Euclidean transformation, the function transforms
according to

FiðrÞ
0
¼

Pn

j¼1

RijFjðR
�1ðr � aÞÞ; fRjag 2 EðnÞ: ð1:2:4:2Þ

In a similar way, one has (pseudo)tensor functions under the
orthogonal group or the Euclidean group. So it is important to
specify under what group an object is a tensor, unless no
confusion is possible.

The n-dimensional vectors form a vector space that carries a
representation of the group O(n). Moreover, it is an irreducible
representation space. To stress this fact, one could speak of
irreducible tensors and vectors. Vectors are here just rank-one
tensors. The three-dimensional Euclidean vector space carries in
this way an irreducible representation of O(3). Such repre-
sentations are characterized by an integer l and are ð2l þ 1Þ-
dimensional. The usual three-dimensional space is therefore an
irreducible l ¼ 1 space for O(3).

Since point groups are subgroups of the orthogonal group and
space groups are subgroups of the Euclidean group, tensors
inherit their transformation properties from their supergroups.
As we have seen in Sections 1.2.2.3 and 1.2.2.7, one can also
define tensors in a quite abstract way. Irreducible tensors under a
group are then elements of a vector space that carries an irre-
ducible representation of that group. Generally, tensors are
elements of a vector space that carries a tensor product repre-
sentation and (anti)symmetric tensors belong to a space with an
(anti)symmetrized tensor product representation.

Because the point groups one usually considers in physics are
subgroups of O(2) or O(3), it is useful to consider the irreducible
representations of these groups. They are not finite, but they are
compact, and for compact groups most of the theorems for finite

groups are still valid if one replaces sums over group elements by
integration over the group.

The group O(3) is the direct product SOð3Þ � C2. Therefore,
there are even and odd representations. They have the property

D�ðRÞ ¼ �ðRÞ; D�ð�RÞ ¼ ��ðRÞ; R 2 SOð3Þ:

The irreducible representations are labelled by non-negative
integers ‘ and have character


‘ðRÞ ¼
sinð‘þ 1

2Þ’

sin 1
2’

ð1:2:4:3Þ

if R is a rotation with rotation angle ’. From the character it
follows that the dimension of the representation D‘ is equal to
ð2‘þ 1Þ.

The tensor product of two irreducible representations of SO(3)
is generally reducible:

D‘ 	 Dm ¼
M‘þm

j¼j‘�mj

Dj ð1:2:4:4Þ

and the symmetrized and antisymmetrized tensor products are

ðDm 	 DmÞs ¼
Mm

j¼0

D2j; ð1:2:4:5Þ

ðDm 	 DmÞa ¼
Mm

j¼1

D2j�1: ð1:2:4:6Þ

If the components of the tensor Ti1...ir
are taken with respect to

an orthonormal basis, the tensor is called a Cartesian tensor. The
orthogonal transformation R then is represented by an ortho-
gonal matrix Rij. Cartesian tensors of higher rank than one are
generally no longer irreducible for the group O(n). For example,
the rank-two tensors in three dimensions have nine components
Tij. Under SO(3), they transform according to the tensor product
of two ‘ ¼ 1 representations. Because

D1 	 D1 ¼ D0 
 D1 
 D2;

the space of rank 2 Cartesian tensors is the direct sum of three
invariant subspaces. This corresponds to the fact that a general
rank 2 tensor can be written as the sum of a diagonal tensor, an
antisymmetric tensor and a symmetric tensor with trace zero.
These three tensors are irreducible tensors, in this case also called
spherical tensors, i.e. irreducible tensors for the orthogonal group.

An irreducible tensor with respect to the group Oð3Þ trans-
forms, in general, according to some reducible representation of a
point group K 2 Oð3Þ. If the group K is a symmetry of the
physical system, the tensor should be invariant under K, i.e. it
should transform according to the identity representation of K.

Consider, for example, a symmetric second-rank tensor under
Oð3Þ. This means that it belongs to the space that transforms
according to the representation

D0 
 D2

[see (1.2.4.6)]. If the symmetry group of the system is the point
group K ¼ 432, the representation

D0ðKÞ 
 D2ðKÞ

has character

R: " � ¼ C3 	2 ¼ C2
4z 	 ¼ C4z 	� ¼ C2


ðRÞ: 6 0 2 0 2

and is equivalent to the direct sum
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