
1.2. REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS
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The multiplicity here is always zero or unity, which is the reason
why one leaves out the number ‘ in the notation.

If the multiplicity m� is unity, the coefficients for given �; �; �
are unique up to a common factor for all i; j; k. This is no longer
the case if the multiplicity is larger, because then one can make
linear combinations of the basis vectors belonging to ��. Anyway,
one has to follow certain conventions. In the case of O(3), for
example, there are the Condon–Shortley phase conventions. The
degree of freedom of the Clebsch–Gordan coefficients for given
matrix representations �� can be seen as follows. Suppose that
there are two basis transformations, S and S0, in the tensor
product space which give the same reduced form:

S D� � D�

� �
S�1 ¼ S0 D� � D�
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S0�1 ¼ D ¼

M
m�D� :

ð1:2:4:11Þ

Then the matrix S0S�1 commutes with every matrix DðRÞ
(R 2 K). If all multiplicities are zero or unity, it follows from
Schur’s lemma that S0S�1 is the direct sum of unit matrices of
dimension d� . If the multiplicities are larger, the matrix S0S�1 is a
direct sum of blocks which are of the form
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such that Detð�ijÞ ¼ 1, and the E’s are d�-dimensional unit
matrices. This means that for multiplicity-free (m� � 1) cases,
the Clebsch–Gordan coefficients are unique up to a common
factor for all coefficients involving one value of �.

The Clebsch–Gordan coefficients satisfy the following rules:
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For the basis vectors of the invariant space belonging to the
identity representation �1, one has � ¼ d� ¼ 1. Consequently,
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1.2.5. Magnetic symmetry

1.2.5.1. Magnetic point groups

Until now, the symmetry transformations we have considered
affect only spatial variables. In physics, however, time coordi-
nates are also often essential, and time reversal is a very impor-
tant transformation as well.

The time-reversal operation generates a group of order 2 with
as elements the unit operator E and the time-reversal operator T.
This transformation commutes with transformations of spatial

variables. One can consider the combined operation of T and a
Euclidean transformation. In other words, we consider the direct
product of the Euclidean group EðdÞ and the time-reversal group
of order 2. Elements of this direct product that belong to EðdÞ are
called orthochronous, whereas the elements of the coset which
are combinations of a Euclidean transformation with T are called
antichronous. We shall start by considering combinations of T
and orthogonal transformations in the physical d-dimensional
space. Such combinations generate a subgroup of the direct
product of OðdÞ and the time-reversal group.

There are three types of such groups. First, one can have a
group that is already a subgroup of OðdÞ. This group does not
have time-reversing elements. A second type of group contains
the operator T and is, therefore, the direct product of a subgroup
of OðdÞ with the time-reversal group. The third type of group
contains antichronous elements but not T itself. This means that
the group contains a subgroup of index 2 that belongs to OðdÞ and
one coset of this subgroup, all elements of which can be obtained
from those of the subgroup by multiplication with one fixed time-
reversing element which is not T. If one then multiplies all
elements of the coset by T, one obtains a group that belongs to
OðdÞ and is isomorphic to the original group. This is the same
situation as for subgroups of Oð3Þ, which is the direct product of
SOð3Þ with space inversion I. Here also all subgroups of
OðdÞ � Z2 are isomorphic to point groups or to the direct product
of a point group and Z2. Magnetic groups can be used to char-
acterize spin arrangements. Because spin inverses sign under time
reversal, a spin arrangement is never invariant under T. There-
fore, the point groups of the second type are also called
nonmagnetic point groups. Because time reversal does not play a
role in groups of the first type, these are called trivial magnetic
point groups, whereas the groups of the third type are called
nontrivial magnetic point groups.

Magnetic point groups are discussed in Chapter 1.5. Ortho-
chronous magnetic point groups (trivial magnetic groups) are
denoted by their symbol as a normal point group. Magnetic point
groups containing T are denoted by the symbol for the ortho-
chronous subgroup, which is a trivial magnetic group, to which
the symbol 10 is added. Magnetic point groups that are neither
trivial nor contain T are isomorphic to a trivial magnetic point
group. They are denoted by the symbol of the latter in which all
symbols for antichronous elements are marked with a prime (0).
For example, �11 is the trivial magnetic group generated by I, �1110 is
the group of four elements generated by I and T, and �110 is the
magnetic group of order 2 generated by the product IT.

Two magnetic point groups are called equivalent if they are
conjugated in OðdÞ � Z2 by an element in OðdÞ. This means that
under the conjugation antichronous elements go to antichronous
elements. The equivalence classes of magnetic point groups are
the magnetic crystal classes. There are 32 classes of trivial crys-
tallographic magnetic point groups, 32 classes of direct products
with the time-reversal group and 58 classes of nontrivial magnetic
crystallographic point groups. They are given in Table 1.2.6.12.

1.2.5.2. Magnetic space groups

Magnetic space groups are subgroups of the direct product of
the Euclidean group EðdÞ with the time-reversal group (this
direct product is sometimes called the Shubnikov group) such
that the orthochronous elements together with the products of
the antichronous elements and T form a space group in d
dimensions. As in the case of magnetic point groups, one can
distinguish trivial magnetic groups, which are subgroups of EðdÞ,
direct products of a trivial group with the time-reversal group
(nonmagnetic) and nontrivial magnetic space groups with anti-
chronous elements but without T. The groups of the third type
can be transformed into groups of the first type by multiplication
of all antichronous elements by T.
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1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

The translation subgroup U of a magnetic space group G is the
intersection of G and TðdÞ � fE;Tg. The factor group G/U is
(isomorphic to) a subgroup of OðdÞ � fE;Tg. For trivial magnetic
space groups, the point group is a subgroup of OðdÞ. For direct
products with fE;Tg, the translation group is the direct product
of an orthochronous lattice with fE;Tg and the point group is a
subgroup of OðdÞ. Magnetic space groups with antichronous
elements but without T have either a translation subgroup
consisting of orthochronous elements or one with antichronous
elements as well. In the first case, the point group is a subgroup of
OðdÞ � fE;Tg and contains antichronous elements; in the second
case, one may always choose orthochronous elements for the
coset representatives with respect to the translation group, and
the point group is a subgroup of OðdÞ. Therefore, nontrivial
magnetic space groups without T have either the same lattice or
the same point group as the space group of orthochronous
elements.

Two magnetic space groups are equivalent if they are affine
conjugated via a transformation with positive determinant that
maps antichronous elements on antichronous elements. Then
there are 1656 equivalence classes: 230 classes of trivial groups
with only orthochronous elements, 230 classes of direct products
with fE;Tg and 1191 classes with nontrivial magnetic groups.

1.2.5.3. Transformation of tensors

Vectors and tensors transforming in the same way under
Euclidean transformations may behave differently when time
reversal is taken into account. As an example, both the electric
field E and magnetic field B transform under a rotation as a
position vector. Under time reversal, the former is invariant, but
the latter changes sign. Therefore, the magnetic field is called a
pseudovector field under time reversal. Under spatial inversion,
the field E changes sign, as does a position vector, but the field B
does not. Therefore, the magnetic field is also a pseudovector
under central inversion. The electric polarization induced by an
electric field is given by the electric susceptibility, a magnetic
moment induced by a magnetic field is given by the magnetic
susceptibility and in some crystals a magnetic moment is induced
by an electric field via the magneto-electric susceptibility. Under
the four elements of the group generated by T ¼ 10 and I ¼ �11,
the fields and susceptibility tensors transform according to

E �11 10 �110

E 1 �1 1 �1

B 1 1 �1 �1

�ee 1 1 1 1

�mm 1 1 1 1

�me 1 �1 �1 1

Here �11
0
¼ �1110.

In general, a vector transforms as the position vector r under
rotations and changes sign under �11, but not under 10. A pseu-
dovector under �11 or (respectively and) 10 gets an additional minus
sign. The generalization to tensors is straightforward.

gTi1...in
¼ "P"T

P
j1...jn

Qn

k¼1

Rikjk

� �
Tj1...jn

; ð1:2:5:1Þ

where "P and "T are �1, depending on the pseudotensor char-
acter with respect to space and time reversal, respectively.

Under a rotation [R 2 SOðdÞ], a vector transforms according
to a representation characterized by the character �ðRÞ of the
representation. In two dimensions � ¼ 2 cos ’ and in three
dimensions � ¼ 1 þ 2 cos ’, if ’ is the rotation angle. Under IR
the character gets an additional minus sign, under RT it is the
same, and under RIT there is again an additional minus sign. For
pseudovectors, either under I or T or both, there are the extra
factors "P, "T and "P"T , respectively. As an example, the character

of the representations corresponding to the electric and magnetic
fields in two orthorhombic point groups (222, 20202 and 20mm0)
are given in Table 1.2.5.1.

The number of invariant components is the multiplicity of the
trivial representation in the representation to which the tensor
belongs. The nonzero invariant field components are Bz for 20202,
Ex and By for 20mm0. These components can be constructed by
means of projection-operator techniques, or more simply by
solving the linear equations representing the invariance of the
tensor under the generators of the point group. For example, the
magnetic field vector B transforms to (�Bx;By;�Bz) under my

and to (Bx;By;�Bz) under mz, and this gives the result that all
components are zero except By.

1.2.5.4. Time-reversal operators

In quantum mechanics, symmetry transformations act on state
vectors as unitary or anti-unitary operators. For the Schrödinger
equation for one particle without spin,

h- i
@

@t
�ðr; tÞ ¼ H�ðr; tÞ; ð1:2:5:2Þ

the operator that reverses time is the complex conjugation
operator � with

��ðr; tÞ ¼ ��ðr; tÞ ð1:2:5:3Þ

satisfying

h- i
@

@t
��ðr;�tÞ ¼ H��ðr;�tÞ;

which is the time-reversed equation.
This operator is anti-linear [�ð��þ ��Þ ¼ ����þ ���] and

has the following commutation relations with the operators r and
p for position and momentum:

�r��1 ¼ r; �p��1: ð1:2:5:4Þ

For a Euclidean transformation g ¼ fRjag, the operation on the
state vector is given by the unitary operator

Tg�ðrÞ ¼ �ðg�1rÞ ¼ �ðR�1ðr � aÞÞ: ð1:2:5:5Þ

The two operators � and Tg commute. Therefore, if g is an
orthochronous element of the symmetry group, the corre-
sponding operator is Tg, and if gT is an antichronous element the
operator is �Tg. The operator �Tg is also anti-unitary: it is anti-
linear and conserves the absolute value of the Hermitian scalar
product: jh�Tg�j�Tg�ij ¼ jh�j�ij.

If the particle has a spin, the time-reversal operator has to
have the commutation relation

�S��1 ¼ �S ð1:2:5:6Þ

with the spin operator S. For a spin-1
2 particle, the spin operators

are Si ¼ h- �i=2 in terms of the Pauli matrices. Then the time-
reversal operator is

TT ¼ �2�: ð1:2:5:7Þ
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Table 1.2.5.1. Character of the representations corresponding to the electric
and magnetic fields in point groups 222, 20202 and 20mm0

ni is the number of invariants.

Point
group E ni B ni

222 3 �1 �1 �1 0 3 �1 �1 �1 0
20202 3 �1 �1 �1 0 3 1 1 �1 1
20mm0 3 �1 1 1 1 3 1 �1 1 1
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The operators corresponding to the elements of a magnetic
symmetry group are generally (anti-)unitary operators on the
state vectors. These operators form a representation of the
magnetic symmetry group.

TgTg0 ¼ Tgg0 : ð1:2:5:8Þ

In principle, they even form a projective representation, but as
discussed before for particles without spin the factor system is
trivial, and for particles with spin one can take as the symmetry
group the double group of the symmetry group.

1.2.5.5. Co-representations

Suppose the magnetic point group G has an orthochronous
subgroup H and an antichronous coset H 0 ¼ aH for some
antichronous element a. The elements of H are represented by
unitary operators, those of H 0 by anti-unitary operators. These
operators correspond to matrices in the following way. Suppose
�j are the elements of a basis of the state vector space. Then

Tg�j ¼
P

k

MðgÞkj�k; g 2 G: ð1:2:5:9Þ

The matrices M do not form a matrix representation in the usual
sense. They satisfy the relations

Mðg1g2Þ ¼ Mðg1ÞMðg2Þ g1 2 H

¼ Mðg1ÞM
�ðg2Þ g1 2 H 0; ð1:2:5:10Þ

as one verifies easily. Matrices satisfying these relations are called
co-representations of the group G.

A co-representation is irreducible if there is no proper invar-
iant subspace. If a co-representation is reducible, there is a basis
transformation S that brings the matrices into a block form. For
co-representations, a basis transformation S with

S�i ¼
Pm

j¼1

Sji�j ð1:2:5:11Þ

transforms the matrices according to

MðhÞ ! S�1MðhÞS; MðahÞ ! S�1MðahÞS�; ðh 2 HÞ:

ð1:2:5:12Þ

Here a is the coset representative of the antichronous elements.
The co-representation restricted to the orthochronous subgroup
H gives an ordinary representation of H which is not necessarily
irreducible even if the co-representation is irreducible. Suppose
that �1 . . . �m form a basis for the irreducible co-representation
of G and that the restriction to H is also irreducible. The elements
Ta�1; . . . ;Ta�m form another basis for the space, and on this
basis the representation matrices of H follow from

ThTa�i ¼ TaTa�1ha�i ¼
Pm

j¼1

Mða�1haÞ
�

jiTa�j: ð1:2:5:13Þ

Because both bases are bases for the same irreducible space, it
means that the (ordinary) representations MðHÞ and Mða�1HaÞ

�

are equivalent.
If the representation MðHÞ is reducible, there is a basis

’1; . . . ; ’d for the irreducible representation DðHÞ. A basis for
the whole space then is given by

’1; . . . ; ’d;Ta’1; . . . ;Ta’d;

because the co-representation of G would be reducible if the last
d vectors were dependent on the first d. On this basis, the
matrices for the co-representation become

MðhÞ ¼
DðhÞ 0

0 Dða�1haÞ
�

� �
;

MðahÞ ¼
0 DðahaÞ

DðhÞ
� 0

� �
; h 2 H; a 2 H 0

ð1:2:5:14Þ

because

Tah’i ¼ Ta

P
j

DðhÞji’j ¼
P

j

DðhÞ
�

jiTa’j

TahTa’i ¼ Taha’i ¼
P

j

DðahaÞji’j:

The two irreducible components for MðHÞ can be either
equivalent or non-equivalent. If they are not equivalent the co-
representation is indeed irreducible, because a basis transfor-
mation S that leaves the matrices MðhÞ the same is necessarily of
the form �E � 	E because of Schur’s lemma, and such a matrix
cannot bring the matrices Dðah) into a reduced form. In this case,
the co-representation MðGÞ is irreducible, in agreement with the
starting assumption, and the dimension m is twice the dimension
of the representation DðHÞ: m ¼ 2d.

If the two irreducible components DðHÞ and Dða�1HaÞ
� are

equivalent, there is a basis transformation U such that

Dða�1haÞ
�
¼ U�1DðhÞU 8 h 2 H:

The basis transformation

T ¼
1 0

0 U�1

� �

then gives a new matrix co-representation for G:

MðhÞ ! T�1MðhÞT ¼
DðhÞ 0

0 DðhÞ

� �
;

MðahÞ ! T�1MðahÞT� ¼
0 DðahaÞU��1

UDðhÞ
� 0

� �
:

The most general basis transformation S that leaves MðhÞ in the
same form is then

S ¼
�E 	E


E �E

� �
: ð1:2:5:15Þ

Under this basis transformation, the matrices MðahÞ become

S�1MðahÞS� ¼
1

ð�� � 	
Þ
M

with

M11 ¼ ���	UDðhÞ
�
þ 
��DðahaÞU��1

M12 ¼ j�j2DðahaÞU��1 � j	j2UDðhÞ
�

M21 ¼ j�j2UDðhÞ
�
� j
j2DðahaÞU��1

M22 ¼ �	�UDðhÞ
�
� 
��DðahaÞU��1:

This is block diagonal if

j	j2UU�Dða�1haÞU��1U� ¼ j�j2DðahaÞ

and analogous expressions for j�j2 and j
j2 also hold.
The transformation matrix U satisfies UU� ¼ �Dða2Þ, as one

can show as follows. From the definition

Dða�1haÞ
�
¼ U�1DðhÞU

follow the two relations

55



1. TENSORIAL ASPECTS OF PHYSICAL PROPERTIES

Dða�2ha2Þ ¼ U��1U�1DðhÞUU�

Dða�2ha2Þ ¼ Dða2Þ
�1

DðhÞDða2Þ:

(Notice that a2 2 H.) Because DðHÞ is irreducible, it follows that
UU�Dða�2Þ is a multiple of the identity: UU� ¼ �Dða2Þ. The
factor � is real because

Dða2Þ
�
¼ U�1Dða2ÞU ¼ U�1UU�U=�

and

Dða2Þ
�
¼ U�U=��:

Hence � ¼ �� ¼ �1.
The conditions for the transformed matrix MðahÞ to be block

diagonal then read

�j	j2Dða2ÞDða�1haÞ ¼ j�j2DðahaÞ; ð1:2:5:16Þ

with the corresponding expressions for � and 
. If � is equal to
�1, these equations do not have a solution. However, when
� ¼ þ1 there is a solution, which means that the co-repre-
sentation is reducible, contrary to the assumption. Therefore, this
situation can not occur.

One can summarize these considerations in the following
theorem.

Theorem 1. If the restriction of an irreducible co-representation
to the orthochronous subgroup is reducible, then either the (two)
irreducible components are non-equivalent, or they are equiva-
lent and connected by a basis transformation U for which
UU� ¼ �Dða2Þ. If the restriction MðHÞ is irreducible, it is
equivalent to Mða�1HaÞ

�.

In the former case, the dimension of the co-representation is
twice that of the restriction, in the latter case they are equal.
Therefore, one has the following corollary.

Corollary. A d-dimensional irreducible representation of the
orthochronous subgroup H can occur as irreducible component
of the restriction of an irreducible co-representation of G with
dimension m with

m ¼ 2d if DðHÞ nonequivalent to Dða�1HaÞ
�

m ¼ 2d if DðHÞ equivalent to Dða�1HaÞ
� and UU� ¼ �Dða2Þ

m ¼ d if DðHÞ equivalent to Dða�1HaÞ
� and UU� ¼ þDða2Þ:

The three cases from theorem (1) can be distinguished by the
following theorem:

Theorem 2. The irreducible representation DðHÞ with character
�ðHÞ belongs to the respective cases of theorem (1) if

P
h2H

�ðahahÞ ¼

0 for the first case

�N for the second case

N for the third case:

8
<

: ð1:2:5:17Þ

The proof of theorem (2) goes as follows. We have

P
h2H

�ðahahÞ ¼
P
h2H

Pd

i¼1

DðahahÞii

¼
P
i;k;l

Dða2Þik

P
h2H

Dða�1haÞklDðhÞli;

ð1:2:5:18Þ

and this gives zero if DðHÞ and Dða�1HaÞ
� are non-equivalent,

because of the orthogonality relations. If the two representations
are equivalent, we take for convenience unitary representations.
Then there is a unitary matrix U with

Dða�1haÞ
�
¼ U�1DðhÞU:

Then we have
P
h2H

�ðahahÞ ¼
P

ik‘mn

Dða2ÞikðU
��1Þkm

P
h2H

DðhÞ
�

mnUn‘DðhÞ‘i

¼ ðN=dÞ
P
i;k;‘

Dða2ÞikðU
��1Þk‘U

�
i‘

¼ ðN=dÞ
P
i;k

Dða2ÞikðU
�UÞik

¼ �ðN=dÞ
P
i;k

Dða2ÞikDða�2Þki ¼ �N:

This proves theorem (2).
In the special case of a group G in which the time reversal 10

occurs as element, one may choose a ¼ 10. In this case, a2 is the
identity and the expressions simplify. Theorem (1) now states that
an irreducible d-dimensional representation DðHÞ of an ortho-
chronous group can occur as irreducible component in the
restriction of an irreducible m-dimensional co-representation of
H � fE; 10g, with

m ¼ 2d if DðHÞ nonequivalent to DðHÞ
�

m ¼ 2d if DðHÞ ¼ UDðHÞ
�
U�1 and UU� ¼ �E

m ¼ d if DðHÞ ¼ UDðHÞ
�
U�1 and UU� ¼ þE;

which correspond to, respectively, [cf. theorem (2)]

P
h2H

�ðh2Þ ¼

0

�N

þN

:

8
<

: ð1:2:5:19Þ

For a spinless particle, the time-reversal operator is the complex
conjugation �. This generates a co-representation of the group Z2.
The symmetry group is the direct product of the point group H
and Z2. Compared to the degeneracy d of a state characterized by
the irreducible representation DðHÞ, the degeneracy is double
(m ¼ 2d) for the first two cases and the same for the third case.
When it is a particle with spin 1

2, the time-reversal operator is �2�,
which is of order 4. If one takes for the coset representative a the
time reversal, one has Dða2Þ ¼ �E. Therefore, the degeneracy is
now doubled in the first and third case, and the same for the
second. This is Kramer’s degeneracy.

1.2.6. Tables

In the following, a short description of the tables is given in order
to facilitate consultation without reading the introductory theo-
retical Sections 1.2.2 to 1.2.5.

Table 1.2.6.1. Finite point groups in three dimensions. The point
groups are grouped by isomorphism class. There are four infinite
families and six other isomorphism classes. (Notation: Cn for the
cyclic group of order n, Dn for the dihedral group of order 2n, T,
O and I the tetrahedral, octahedral and icosahedral groups,
respectively). Point groups of the first class are subgroups of
SO(3), those of the second class contain �E, and those of the
third class are not subgroups of SO(3), but do not contain �E
either. The families Cn and Dn are also isomorphism classes of
two-dimensional finite point groups.

Table 1.2.6.2. Among the infinite number of finite three-
dimensional point groups, 32 are crystallographic.

Table 1.2.6.3. Character table for the cyclic groups Cn. The
generator is denoted by �. The number of elements in the
conjugacy classes (ni) is one for each class. The order is the
smallest nonnegative power p for which Ap ¼ E. The n irre-
ducible representations are denoted by �i.

Table 1.2.6.4. Character tables for the dihedral groups Dn of
order 2n. ni is the number of elements in the conjugacy class Ci.
The irreducible representations are denoted by �i.
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