International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 1.2, pp. 68-70

Section 1.2.7.4.6. Invariant tensors

M. Ephraïm,b T. Janssen,a A. Jannerc and A. Thiersd

1.2.7.4.6. Invariant tensors

| top | pdf |

Once one has the character of the properly symmetrized tensor, the number of invariants is just [m_{1}], the number of times the trivial representation occurs in the decomposition.

Example (1).  Dimension 3, rank 3, symmetry type (123), group 3. Basis: [xxx], [xxy], [xxz], [xyy], [xyz], [xzz], [yyy], [yyz], [yzz], [zzz]. Under [\pmatrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 1 & 0 & 0 }]the basis elements go to [yyy,] [yyz,] [yyx,] [yzz,] [yzx,] [yxx,] [zzz,] [zzx,] [zxx,] [xxx], respectively, and these are equivalent to [yyy,] [yyz,] [xyy,] [yzz,] [xyz,] [xxy,] [zzz,] [xzz,] [xxz,] [xxx], respectively. This gives the ten-dimensional matrix [M = \pmatrix{ 0&0&0&0&0&0&0&0&0&1\cr 0&0&0&0&0&1&0&0&0&0\cr 0&0&0&0&0&0&0&0&1&0\cr 0&0&1&0&0&0&0&0&0&0\cr 0&0&0&0&1&0&0&0&0&0\cr 0&0&0&0&0&0&0&1&0&0\cr 1&0&0&0&0&0&0&0&0&0\cr 0&1&0&0&0&0&0&0&0&0\cr 0&0&0&1&0&0&0&0&0&0\cr 0&0&0&0&0&0&1&0&0&0 }.]Then [P(M-E)Q=D], with D diagonal. There are four diagonal elements of D which are zero, and the invariant tensors correspond to the corresponding four columns of the matrix Q. The invariant polynomials are [xxx+yyy+zzz,\quad xxy+xzz+yyz,\quad xxz+yzz+xyy,\quad xyz. ]

Example (2).  Dimension 2, rank 2, symmetry type (12). Group generated by [ \pmatrix{ 0 & -1 \cr 1 & -1 }.]Basis [xx], [xy], [yy] goes to [yy], [-xy+yy], [xx-2xy+yy]. This gives [ M = \pmatrix{ 0 & 0 & 1 \cr 0 & -1 & -2 \cr 1 & 1 & 1 }. ]Because [ \pmatrix{ 1&0&0 \cr 2&1&2 \cr 1&0&1 } (M-E) \pmatrix{1&-1&1 \cr 0&1&0 \cr 0&-1&1 } = \pmatrix{ -1&0&0 \cr 0&0&0 \cr 0&0&2 } ,]the invariant tensor corresponds to the second column of Q, which as a polynomial reads [-xx+xy-yy]. This can be written with the tensor [{\rm T}_{ij}] as [-xx+xy-yy = - \textstyle\sum\limits_{i,j}T_{ij}x_{i}x_{j},\quad T_{ij} = \pmatrix{1&-{{1}\over{2}} \cr -{{1}\over{2}} & 1 } ]This tensor T is invariant under the group.

Example (3).  Dimension 3, rank 2, tensor type (12). Group generated by matrix([[0 −1 0][1 0 0][0 0 1]]). The basis [xx], [xy], [xz], [yy], [yz], [zz] goes under the generator to [yy], [-xy], [-yz], [xx], [xz], [zz]. The solution of [(M-E)v=0] is [ \alpha_1 (xx+yy) + \alpha_2 zz. ]The matrix D has two zeros on the diagonal.

Example (4).  Dimension 3, rank 3, type (123). Same group as in Example (3). Basis [xxx], [xxy], [xxz], [xyy], [xyz], [xzz], [yyy], [yyz], [yzz], [zzz]. The solution [ \alpha_1 (xxz+yyz) + \alpha_2 zzz ]corresponds to a tensor with relations [{\rm T}_{113}={\rm T}_{223}], [{\rm T}_{111}={\rm T}_{112}={\rm T}_{122}={\rm T}_{123} ={\rm T}_{133}={\rm T}_{222}={\rm T}_{233}=0].

Example (5).  Dimension 3, rank 4, type ((12)(34)). Not only [i_{1}\leq i_{2}] and [i_{3}\leq i_{4}], but also ([i_{1}i_{2})], should come lexicographically before ([i_{3}i_{4}]). Basis [xxxx,] [xxxy,] [xxxz,] [xxyy,] [xxyz,] [xxzz,] [xyxy,] [xyxz,] [xyyy,] [xyyz,] [xyzz,] [xzxz,] [xzyy,] [xzyz,] [xzzz,] [yyyy,] [yyyz,] [yyzz,] [yzyz,] [yzzz,] [zzzz]. Under the same group as in example (3), there are seven invariants. Invariant polynomial: [\eqalign{& \alpha_1 (xxxx+yyyy)+\alpha_2 (xxxy-xyyy)+\alpha_3 xxyy +\alpha_4 xyxy \cr &\quad +\alpha_5 zzzz+\alpha_6 (xxzz+yyzz)+ \alpha_7 (xzxz+yzyz). }] This corresponds to the tensor relations [\displaylines{\matrix{ {\rm T}_{xxxx}=-{\rm T}_{yyyy}\hfill &{\rm T}_{xxxy}={\rm T}_{xyyy}\hfill & {\rm T}_{xxxz}=0\hfill \cr {\rm T}_{xxyz}=0 \hfill & {\rm T}_{xxzz}={\rm T}_{yyzz} \hfill & {\rm T}_{xyxz}=0\hfill \cr {\rm T}_{xyyz}=0 \hfill & {\rm T}_{xyzz}=0 \hfill & {\rm T}_{xzxz}={\rm T}_{yzyz} \hfill \cr {\rm T}_{xzyy}=0 \hfill & {\rm T}_{xzyz}=0 \hfill & {\rm T}_{xzzz}=0 \hfill\cr {\rm T}_{yyyz}=0 \hfill & {\rm T}_{yzzz}=0 \hfill& \cr}\cr \rightarrow\pmatrix{ \alpha_{1} & \alpha_{3} & \alpha_6 & 0 & 0 & \alpha_2 \cr \alpha_3 & \alpha_1 & \alpha_6 & 0 & 0 & -\alpha_2 \cr \alpha_6 & \alpha_6 & \alpha_5 & 0 & 0 & 0 \cr 0 & 0 & 0 & \alpha_7 & 0 & 0 \cr 0 & 0 & 0 & 0 & \alpha_7 & 0 \cr \alpha_2 & -\alpha_2 & 0 & 0 & 0 & \alpha_4 }. }]The latter form is that of an elastic tensor with the usual convention [1=xx], [2=yy], [3=zz], [4=yz], [5=xz], [6=xy].

Example (6).  Dimension 3, rank 2, type [12]. The same group as in example (3). Basis [xy,xz,yz \rightarrow -yx,-yz,xz], which are equivalent to [xy,-yz,xz]. The transformation in the tensor space is [\eqalign{ M &= \pmatrix{ 1&0&0 \cr 0&0&1 \cr 0&-1 &0 } \rightarrow \pmatrix{ 0&0&0 \cr 0&-1&1 \cr 0&-1&-1 } v=0 \!:\cr v&=\pmatrix{ 1\cr 0\cr 0 } \sim xy. }]There is just one invariant antisymmetric polynomial [xy=-yx] corresponding to the tensor [T = \pmatrix{ 0&1 \cr -1 & 0 }. ]

Example (7).  Dimension 3, rank 3, type [123]. Basis [xyz] invariant under the group: [xyz\rightarrow -yxz \sim xyz].The corresponding tensor is the fully antisymmetric rank 3 tensor: [{\rm T}_{ijk} = 1] if [ijk] is an even permutation of 123, [= -1] if [ijk] is an odd permutation, and [=0] if two or three indices are equal (permutation tensor, see Section 1.1.3.7.2[link] ).

Example (8).  Calculation with characters. See Table 1.2.7.2[link].

Table 1.2.7.2 | top | pdf |
Calculation with characters

Generator Composite character Characters Decomposition
[\pmatrix{ 0&1&0\cr 0&0&1\cr 1&0&0 }] R E A AA    
[\chi (R)] 3 0 0    
[\chi (R)^3] 27 0 0    
[\chi (R^2)] 3 0 0    
[\chi (R^2)\chi (R)] 9 0 0    
[\chi (R^3)] 3 3 3    
Example (1) [{{1}\over{6}}(\chi (R)^3 +3\chi (R^2)\chi (R)+2\chi (R^3))] 10 1 1   [4D_1+3D_2+3D_3 ]
[\pmatrix{ 0&-1 \cr 1& -1 } ] R E A AA    
[\chi (R)] 2 −1 −1    
[\chi (R)^2] 4 1 1    
[\chi (R^2)] 2 −1 −1    
Example (2) [{{1}\over{2}} (\chi (R)^2 +\chi (R^2)]) 3 0 0   [D_1+D_2+D_3]
[\pmatrix{ 0&-1&0\cr 1&0&0 \cr 0&0&1 }] R E A AA AAA  
[\chi (R)] 3 1 −1 1  
[\chi (R)^2] 9 1 1 1  
[\chi (R^2)] 3 −1 3 −1  
Example (3) [{{1}\over{2}} (\chi (R)^2 +\chi (R^2)]) 6 0 2 0 [2D_1+D_2+2D_3+D_4 ]
As above [\chi (R)] 3 1 −1 1  
Example (4) [\chi (R)^3] 27 1 −1 1  
  [\chi (R^2)] 3 −1 3 −1  
  [\chi (R^2)\chi (R)] 9 −1 −3 −1  
  [\chi (R^3)] 3 1 −1 1  
  [{{1}\over{6}}(\chi (R)^3 +3\chi (R^2)\chi (R)+2\chi (R^3))] 10 0 −2 0 [2D_1+3D_2+2D_3+3D_4]
As above [\chi (R)] 3 1 −1 1  
Example (5) [{{1}\over{2}} (\chi (R)^2 +\chi (R^2)])=[\chi_s (R)] 6 0 2 0  
  [\chi_{s}(R)^2] 36 0 4 0  
  [\chi_{s}(R^2)] 6 2 6 2  
  ((12)(34)) 21 1 5 1 [7D_1+4D_2+6D_3+4D_4]
As above, example (6) [{{1}\over{2}} (\chi (R)^2 -\chi (R^2)]) 3 1 −1 1 [D_1+D_2+D_4 ]
As above, example (7) [{{1}\over{6}}(\chi (R)^3 -3\chi (R^2)\chi (R)+2\chi (R^3))] 1 1 1 1 [D_1]

Example (9).  The action matrix for a pseudotensor.

Take the group [4/m] with generators [\pmatrix{0&-1&0\cr 1&0&0 \cr 0&0&1 }, \quad \pmatrix{ 1&0&0\cr 0&1&0\cr 0&0&-1 }. ]Consider the rank 3 pseudotensor (123). The action matrix is determined from the action of the generators A and B on the basis:[\matrix{&A &B\cr \phantom{-}xxx &-yyy & -xxx\cr \phantom{-}xxy & \phantom{-}xyy & -xxy\cr \phantom{-}xxz & \phantom{-}yyz & \phantom{-}xxz\cr \phantom{-}xyy & -xxy & -xyy\cr \phantom{-}xyz & -xyz & \phantom{-}xyz\cr \phantom{-}xzz & -yzz & -xzz \cr \phantom{-}yyy & \phantom{-}xxx & -yyy\cr \phantom{-}yyz & \phantom{-}xxz & \phantom{-}yyz \cr \phantom{-}yzz & \phantom{-}xzz & -yzz \cr \phantom{-}zzz & \phantom{-}zzz & \phantom{-}zzz }]Therefore, the action matrix becomes [ \pmatrix{ 0&0&0&0&0&0&1&0&0&0\cr 0&0&0&-1&0&0&0&0&0&0\cr 0&0&0&0&0&0&0&1&0&0\cr 0&1&0&0&0&0&0&0&0&0\cr 0&0&0&0&-1&0&0&0&0&0\cr 0&0&0&0&0&0&0&0&1&0\cr -1&0&0&0&0&0&0&0&0&0\cr 0&0&1&0&0&0&0&0&0&0\cr 0&0&0&0&0&-1&0&0&0&0\cr 0&0&0&0&0&0&0&0&0&1\cr -1&0&0&0&0&0&0&0&0&0\cr 0&-1&0&0&0&0&0&0&0&0\cr 0&0&1&0&0&0&0&0&0&0\cr 0&0&0&-1&0&0&0&0&0&0\cr 0&0&0&0&1&0&0&0&0&0\cr 0&0&0&0&0&-1&0&0&0&0\cr 0&0&0&0&0&0&-1&0&0&0\cr 0&0&0&0&0&0&0&1&0&0\cr 0&0&0&0&0&0&0&0&-1&0\cr 0&0&0&0&0&0&0&0&0&1 }.]After diagonalization, one finds two nonzero elements on the diagonal: [\displaylines{zzz=a;\quad xxz=yyz=b;\cr xxx=xxy=xyy=xyz=xzz=yyy=yzz=0. }]








































to end of page
to top of page