International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 2.2, p. 298

Section 2.2.6.2. Energy bands

K. Schwarza*

a Institut für Materialchemie, Technische Universität Wien, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
Correspondence e-mail: kschwarz@theochem.tuwein.ac.at

2.2.6.2. Energy bands

| top | pdf |

Each irreducible representation of the space group, labelled by [{\bf k}], denotes an energy [E^{j}({\bf k})], where [{\bf k}] varies quasi-continuously over the BZ and the superscript j numbers the band states. The quantization of [{\bf k}] according to (2.2.4.13)[link] and (2.2.4.15)[link] can be done in arbitrary fine steps by choosing corresponding periodic boundary conditions (see Section 2.2.4.2[link]). Since [{\bf k}] and [{\bf k+K}] belong to the same Bloch state, the energy is periodic in reciprocal space: [E^{j}({\bf k})=E^{j}({\bf k+K}).\eqno(2.2.6.6)]Therefore it is sufficient to consider [{\bf k}] vectors within the first BZ. For a given [{\bf k}], two bands will not have the same energy unless there is a multidimensional small representation in the group of [{\bf k}] or the bands belong to different irreducible representations and thus can have an accidental degeneracy. Consequently, this can not occur for a general [{\bf k}] vector (without symmetry).








































to end of page
to top of page