International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 2.4, p. 329

Section 2.4.1. Introduction

R. Vachera* and E. Courtensa

a Laboratoire des Verres, Université Montpellier 2, Case 069, Place Eugène Bataillon, 34095 Montpellier CEDEX, France
Correspondence e-mail:  rene.vacher@ldv.univ-montp2.fr

2.4.1. Introduction

| top | pdf |

Brillouin scattering originates from the interaction of an incident radiation with thermal acoustic vibrations in matter. The phenomenon was predicted by Brillouin in 1922 (Brillouin, 1922[link]) and first observed in light scattering by Gross (Gross, 1930a[link],b[link]). However, owing to specific spectrometric difficulties, precise experimental studies of Brillouin lines in crystals were not performed until the 1960s (Cecchi, 1964[link]; Benedek & Fritsch, 1966[link]; Gornall & Stoicheff, 1970[link]) and Brillouin scattering became commonly used for the investigation of elastic properties of condensed matter with the advent of laser sources and multipass Fabry–Perot interferometers (Hariharan & Sen, 1961[link]; Sandercock, 1971[link]). More recently, Brillouin scattering of neutrons (Egelstaff et al., 1989[link]) and X-rays (Sette et al., 1998[link]) has been observed.

Brillouin scattering of light probes long-wavelength acoustic phonons. Thus, the detailed atomic structure is irrelevant and the vibrations of the scattering medium are determined by macroscopic parameters, in particular the density ρ and the elastic coefficients [c_{ijk\ell }]. For this reason, Brillouin scattering is observed in gases, in liquids and in crystals as well as in disordered solids.

Vacher & Boyer (1972[link]) and Cummins & Schoen (1972[link]) have performed a detailed investigation of the selection rules for Brillouin scattering in materials of various symmetries. In this chapter, calculations of the sound velocities and scattered intensities for the most commonly investigated vibrational modes in bulk condensed matter are presented. Brillouin scattering from surfaces will not be discussed. The current state of the art for Brillouin spectroscopy is also briefly summarized.

References

First citation Benedek, G. & Fritsch, K. (1966). Brillouin scattering in cubic crystals. Phys. Rev. 149, 647–662.Google Scholar
First citation Brillouin, L. (1922). Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l'agitation thermique. Ann. Phys. Paris, 17, 88–122.Google Scholar
First citation Cecchi, L. (1964). Etude interférométrique de la diffusion Rayleigh dans les cristaux – diffusion Brillouin. Doctoral Thesis, University of Montpellier.Google Scholar
First citation Cummins, H. Z. & Schoen, P. E. (1972). Linear scattering from thermal fluctuations. In Laser handbook, Vol. 2, edited by F. T. Arecchi & E. O. Schulz-Dubois, pp. 1029–1075. Amsterdam: North-Holland.Google Scholar
First citation Egelstaff, P. A., Kearley, G., Suck, J.-B. & Youden, J. P. A. (1989). Neutron Brillouin scattering in dense nitrogen gas. Europhys. Lett. 10, 37–42.Google Scholar
First citation Gornall, W. S. & Stoicheff, B. P. (1970). The Brillouin spectrum and elastic constants of xenon single crystals. Solid State Commun. 8, 1529–1533.Google Scholar
First citation Gross, E. (1930a). Change of wave-length of light due to elastic heat waves at scattering in liquids. Nature (London), 126, 201–202.Google Scholar
First citation Gross, E. (1930b). The splitting of spectral lines at scattering of light by liquids. Nature (London), 126, 400.Google Scholar
First citation Hariharan, P. & Sen, J. (1961). Double-passed Fabry–Perot interfero­meter. J. Opt. Soc. Am. 51, 398–399.Google Scholar
First citation Sandercock, J. R. (1971). The design and use of a stabilised multipassed interferometer of high contrast ratio. In Light scattering in solids, edited by M. Balkanski, pp. 9–12. Paris: Flammarion.Google Scholar
First citation Sette, F., Krisch, M. H., Masciovecchio, C., Ruocco, G. & Monaco, G. (1998). Dynamics of glasses and glass-forming liquids studied by inelastic X-ray scattering. Science, 280, 1550–1555.Google Scholar
First citation Vacher, R. & Boyer, L. (1972). Brillouin scattering: a tool for the measurement of elastic and photoelastic constants. Phys. Rev. B, 6, 639–673.Google Scholar








































to end of page
to top of page