International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 3.1, pp. 338-376
https://doi.org/10.1107/97809553602060000642

Chapter 3.1. Structural phase transitions

J.-C. Tolédano,d* V. Janovec,b V. Kopský,e J. F. Scottc and P. Bočeka

d Ecole Polytechnique, Route de Saclay, 91128 Palaiseau CEDEX, France,bDepartment of Physics, Technical University of Liberec, Hálkova 6, 461 17 Liberec 1, Czech Republic,eInstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, and Department of Physics, Technical University of Liberec, Hálkova 6, 461 17 Liberec 1, Czech Republic,cEarth Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EQ, England, and aInstitute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod vodárenskou věží 4, 182 08 Praha 8, Czech Republic
Correspondence e-mail:  toledano@hp1sesi.polytechnique.fr

References

First citation Aizu, K. (1969). Possible species of ferroelastic crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn, 27, 387–396.Google Scholar
First citation Aizu, K. (1970). Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B, 2, 754–772.Google Scholar
First citation Aizu, K. (1973). Second order ferroic states. J. Phys. Soc. Jpn, 34, 121–128.Google Scholar
First citation Altmann, S. L. & Herzig, P. (1994). Point-group theory tables. Oxford: Clarendon Press.Google Scholar
First citation Aroyo, M. I. & Perez-Mato, J. M. (1998). Symmetry mode analysis of displacive phase transitions using International Tables for Crystallography. Acta Cryst. A54, 19–30.Google Scholar
First citation Ascher, E. (1968). Lattices of equi-translation subgroups of the space groups. Geneva: Battelle.Google Scholar
First citation Ascher, E. & Kobayashi, J. (1977). Symmetry and phase transitions: the inverse Landau problem. J. Phys. C: Solid State Phys. 10, 1349–1363.Google Scholar
First citation Balkanski, M., Teng, M. K. & Nusimovici, M. (1969). Lattice dynamics in KNO3. Phases I, II and III. In Light scattering spectra of solids, edited by G. B. Wright, pp. 731–746. Paris: Flammarion.Google Scholar
First citation Blinc, R. (1960). On the isotopic effects in the ferroelectric behaviour of crystals with short hydrogen bonds. J. Phys. Chem. Solids, 13, 204–211.Google Scholar
First citation Blinc, R., Jamsek-Vilfan, M., Lahajnar, G. & Hajdukovic, G. (1970). Nuclear magnetic resonance study of the ferroelectric transition in diglycine nitrate and tris-sarcosine calcium chloride. J. Chem. Phys. 52, 6407–6411.Google Scholar
First citation Bradley, C. J. & Cracknell, A. P. (1972). The mathematical theory of symmetry in solids. Representation theory for point groups and space groups. Oxford: Clarendon Press.Google Scholar
First citation Chan, L. Y. Y. & Geller, S. (1977). Crystal structure and conductivity of 26-silver 18-iodine tetratungstate. J. Solid State Chem. 21, 331–347.Google Scholar
First citation Cochran, W. (1960). Crystal stability and the theory of ferroelectricity; Part I. Adv. Phys. 9, 387–402.Google Scholar
First citation Cochran, W. (1961). Crystal stability and the theory of ferroelectricity; Part II. Piezoelectric crystals. Adv. Phys. 10, 401–420.Google Scholar
First citation Cowley, R. A. (1962). Temperature dependence of a transverse optic mode in strontium titanate. Phys. Rev. Lett. 9, 159–161.Google Scholar
First citation Cowley, R. A. (1964). Lattice dynamics and phase transitions mode in strontium titanate. Phys. Rev. A, 134, 981–997.Google Scholar
First citation Cowley, R. A. (1970). On the dielectric properties of an anharmonic crystal. J. Phys. Soc. Jpn, 28, Suppl., 205–209.Google Scholar
First citation Devonshire, A. F. (1954). Theory of ferroelectrics. Adv. Phys. 3, 85.Google Scholar
First citation Dvořák, V. (1974). Improper ferroelectrics. Ferroelectrics, 7, 1–9.Google Scholar
First citation Errandonea, G., Tolédano, J.-C., Litzler, A., Schneck, J., Savary, H. & Aubrée, J. (1984). Kinetic characteristics of the thermal hysteresis in an incommensurate system. J. Phys. Lett. 45, L329–L334.Google Scholar
First citation Fleury, P. A., Scott, J. F. & Worlock, J. M. (1968). Soft phonon modes and the 110 K phase transition in strontium titanate. Phys. Rev. Lett. 21, 16–19.Google Scholar
First citation Fox, D. L., Scott, J. F. & Bridenbaugh, P. M. (1976). Soft modes in ferroelastic LaP5O14 and NdP5O14. Solid State Commun. 18, 111–113.Google Scholar
First citation Geller, S. & Bala, V. B. (1956). Crystallographic studies of perovskite-like compounds. II. Rare earth alluminates. Acta Cryst. 9, 1019–1024.Google Scholar
First citation Geller, S., Wilber, S. A., Ruse, G. F., Akridge, J. R. & Turkovic, A. (1980). Anisotropic electrical conductivity and low-temperature phase transitions of the solid electrolyte Ag26I18W4O16. Phys. Rev. B, 21, 2506–2512.Google Scholar
First citation Greer, A. L., Habbal, F., Scott, J. F. & Takahashi, T. (1980). Specific heat anomalies and phase transitions in the solid electrolyte Ag26I18W4O16. J. Chem. Phys. 73, 5833–5867.Google Scholar
First citation Habbal, F., Zvirgzds, J. A. & Scott, J. F. (1978). Raman spectra of structural phase transitions in Ag26I18W4O16. J. Chem. Phys. 69, 4984–4989.Google Scholar
First citation Habbal, F., Zvirgzds, J. A. & Scott, J. F. (1980). Ferroelectric phase transition in the superionic conductor Ag26I18W4O16. J. Chem. Phys. 72, 2760–2763.Google Scholar
First citation Huang, C. Y., Dries, L. T., Hor, P. H., Meng, R. I., Chu, C. W. & Frankel, R. B. (1987). Observation of possible superconductivity at 230 K. Nature (London), 238, 403–404.Google Scholar
First citation Hulm, J. K. (1950). The dielectric properties of some alkaline earth titanates at low temperatures. Proc. Phys. Soc. London Ser. A, 63, 1184–1185.Google Scholar
First citation Hulm, J. K. (1953). Low-temperature properties of cadmium and lead niobates. Phys. Rev. 92, 504.Google Scholar
First citation IEEE Standard on Piezoelectricity STD 176–1987 . (1987). New York: The Institute of Electrical and Electronics Engineers, Inc. This IEEE Std 176–1987 is reproduced in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. (1996). 43, No. 5.Google Scholar
First citation Indenbom, V. L. (1960). Phase transitions without change in the number of atoms in the unit cell of the crystal. Sov. Phys. Crystallogr. 5, 105–115.Google Scholar
First citation International Tables for Crystallography (2004). Vol. A1. Symmetry relations between space groups, edited by H. Wondratschek & U. Müller. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation International Tables for Crystallography (2005). Vol. A. Space-group symmetry, edited by Th. Hahn. Heidelberg: Springer.Google Scholar
First citation Izyumov, Yu. A. & Syromiatnikov, V. N. (1990). Phase transitions and crystal symmetry. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Janovec, V., Dvořák, V. & Petzelt, J. (1975). Symmetry classification and properties of equi-translation structural phase transitions. Czech. J. Phys. B25, 1362–1396.Google Scholar
First citation Jansen, L. & Boon, M. (1967). Theory of finite groups. Applications in physics. Symmetry groups of quantum mechanical systems. Amsterdam: North-Holland.Google Scholar
First citation Kociński, J. (1983). Theory of symmetry changes at continuous phase transitions. Warsaw: PWN – Polish Scientific Publishers; Amsterdam: Elsevier.Google Scholar
First citation Kociński, J. (1990). Commensurate and incommensurate phase transitions. Warsaw: PWN – Polish Scientific Publishers; Amsterdam: Elsevier.Google Scholar
First citation Kopský, V. (1976a). The use of the Clebsch–Gordan reduction of the Kronecker square of the typical representation in symmetry problems of crystal physics. I. Theoretical foundations. J. Phys. C: Solid State Phys. 9, 3391–3405.Google Scholar
First citation Kopský, V. (1976b). The use of the Clebsch–Gordan reduction of the Kronecker square of the typical representation in symmetry problems of crystal physics. II. Tabulation of Clebsch–Gordan products for classical and magnetic crystal point groups. J. Phys. C: Solid State Phys. 9, 3405–3420.Google Scholar
First citation Kopský, V. (1979a). Tensorial covariants of the 32 crystal point groups. Acta Cryst. A35, 83–95.Google Scholar
First citation Kopský, V. (1979b). A simplified calculation and tabulation of tensorial covariants for magnetic point groups belonging to the same Laue class. Acta Cryst. A35, 95–101.Google Scholar
First citation Kopský, V. (1979c). Extended integrity bases of irreducible matrix groups. The crystal point groups. J. Phys. A: Math. Gen. 12, 943–957.Google Scholar
First citation Kopský, V. (1979d). Representation generating theorem and interaction of improper quantities with order parameter. J. Phys. A. Math. Gen. 12, L291–L294.Google Scholar
First citation Kopský, V. (1982). Group lattices, subduction of bases and fine domain structures for magnetic crystal point groups. Prague: Academia.Google Scholar
First citation Kopský, V. (2000). The change of tensor properties at ferroic phase transitions. Ferroelectrics, 237, 127–134.Google Scholar
First citation Kopský, V. (2001). Tensor parameters of ferroic phase transitions. I. Theory and tables. Phase Transit. 73, No. 1–2, 1–422.Google Scholar
First citation Koster, G. F., Dimmock, J. O., Wheeler, R. E. & Statz, H. (1963). Properties of the 32 groups. Cambridge: MIT Press.Google Scholar
First citation Kozlov, G. V.., Volkov, A. A., Scott, J. F. & Petzelt, J. (1983). Millimeter wavelength spectroscopy of the ferroelectric phase transition in tris-sarcosine calcium chloride. Phys. Rev. B, 28, 255–261.Google Scholar
First citation Laegreid, T., Fossheim, K., Sandvold, E. & Juisrud, S. (1987). Specific heat anomaly at 220 K connected with superconductivity at 90 K in ceramic YBa2Cu3O7−x. Nature (London), 330, 637–638.Google Scholar
First citation Landau, L. D. (1937). Theory of phase transitions. I. Phys. Z. Sowjun. 11, 26–47; II. Phys. Z. Sowjun. 11, 545–555.Google Scholar
First citation Landau, L. D. & Lifshitz, E. M. (1969). Course in theoretical physics, Vol. 5, Statistical physics, 2nd ed. Oxford: Pergamon Press.Google Scholar
First citation Levanyuk, A. P. & Sannikov, D. G. (1974). Improper seignetoelectrics. Uspekhi Fiz. Nauk. 112, 561–589. (In Russian.) Google Scholar
First citation Lines, M. E. & Glass, A. M. (1977). Principles and applications of ferroelectrics and related materials. Oxford University Press.Google Scholar
First citation Lytle, F. W. (1964). X-ray diffractometry of low-temperature phase transformations in strontium titanate. J. Appl. Phys. 35, 2212–2214.Google Scholar
First citation Lyubarskii, G. Ya. (1960). The application of group theory in physics. Oxford: Pergamon Press.Google Scholar
First citation MacFarlane, R. M., Rosen, H. & Seki, H. (1987). Temperature dependence of the Raman spectra of the high-Tc superconductor YBa2Cu3O7−x. Solid State Commun. 63, 831–834.Google Scholar
First citation Nimmo, J. K. & Lucas, D. W. (1973). The crystal structures of [\gamma]- and [\beta]-KNO3 and the [\alpha\leftarrow\gamma\leftarrow\beta] phase transformations. Acta Cryst. B32, 1968–1971.Google Scholar
First citation Nowick, A. S. (1995). Crystal properties via group theory. Cambridge University Press.Google Scholar
First citation Nye, J. F. (1985). Physical properties of crystals. Oxford: Clarendon Press.Google Scholar
First citation Oliver, W. F. (1990). PhD thesis, University of Colorado.Google Scholar
First citation Patera, J., Sharp, R. T. & Winternitz, P. (1978). Polynomial irreducible tensors for point groups. J. Math. Phys. 19, 2362–2376.Google Scholar
First citation Peercy, P. S. (1975a). Soft mode and coupled modes in the ferroelectric phase of KH2PO4. Solid State Commun. 16, 439–442.Google Scholar
First citation Peercy, P. S. (1975b). Measurement of the soft mode and coupled modes in the paraelectric and ferroelectric phases of KH2PO4. Phys. Rev. B, 12, 2741–2746.Google Scholar
First citation Pick, R. (1969). Private communication.Google Scholar
First citation Prokhorova, S. D., Smolensky, G. A., Siny, I. G., Kuzminov, E. G., Mikvabia, V. D. & Arndt, H. (1980). Light scattering study of the phase transition in tris-sarcosine calcium chloride. Ferroelectrics, 25, 629–632.Google Scholar
First citation Rebane, L., Fimberg, T. A., Fefer, E. M., Blumberg, G. E. & Joon, E. R. (1988). Raman scattering study of lattice instability in YBa2Cu3O7−x at 200–240 K. Solid State Commun. 65, 1535–1537.Google Scholar
First citation Rousseau, D. L., Bauman, R. P. & Porto, S. P. S. (1981). Normal mode determination in crystals. J. Raman Spectrosc. 10, 253–290.Google Scholar
First citation Schneck, J. (1982). Thèse de Doctorat d'Etat ès Sciences Physiques, Université Pierre et Marie Curie (Paris).Google Scholar
First citation Schneck, J., Primot, J., Von der Muhl, R. & Ravez, J. (1977). New phase transition with increasing symmetry on cooling in barium sodium niobate. Solid State Commun. 21, 57–60.Google Scholar
First citation Scott, J. F. (1969). Raman study of trigonal–cubic phase transitions in rare-earth aluminates. Phys. Rev. 183, 823–825.Google Scholar
First citation Scott, J. F. (1999). A comparison of Ag- and proton-conducting ferroelectrics. Solid State Ionics, 125, 141–146.Google Scholar
First citation Scott, J. F. & Pouligny, B. (1988). Raman spectroscopic study of submicron KNO3 films. J. Appl. Phys. 64, 1547–1551.Google Scholar
First citation Scott, J. F. & Remeika, J. P. (1970). High-temperature Raman study of SmAlO3. Phys. Rev. B, 1, 4182–4185.Google Scholar
First citation Shannon, R. D. & Prewitt, C. T. (1969). Effective ionic radii in oxides and fluorides. Acta Cryst. B25, 925–945.Google Scholar
First citation Shapiro, S. M., Cowley, R. A., Cox, D. E., Eibschutz, M. & Guggenheim, H. J. (1976). Neutron scattering study of incommensurate BaMnF4. In Proc. Natl Conf. Neutron Scat. edited by R. M. Moon, pp. 399–406. Springfield, VA: Nat. Tech. lnfo. Serv.Google Scholar
First citation Shawabkeh, A. & Scott, J. F. (1989). Raman spectra of low-temperature phase transitions in RbAg4I5. J. Raman Spectrosc. 20, 277–281.Google Scholar
First citation Shawabkeh, A. & Scott, J. F. (1991). Raman spectroscopy of incommensurate Ba2NaNb5O15. Phys. Rev. B, 43, 10999–11004.Google Scholar
First citation Shinnaka, Y. (1962). X-ray study on the disordered structure above the ferroelectric Curie point in KNO3. J. Phys. Soc. Jpn, 17, 820–828.Google Scholar
First citation Shuvalov, L. A. (1988). Editor. Modern crystallography IV. Physical properties of crystals. Berlin: Springer-Verlag.Google Scholar
First citation Sirotin, Yu. I. & Shaskolskaya, M. P. (1982). Fundamentals of crystal physics. Moscow: Mir Publishers.Google Scholar
First citation Spencer, E. G., Guggenheim, H. J. & Kominiak, G. J. (1970). BaMnF4, a new crystal for microwave ultrasonics. Appl. Phys. Lett. 17, 300–301.Google Scholar
First citation Stokes, H. T. & Hatch, D. M. (1988). Isotropy groups of the 230 crystallographic space groups. Singapore: World Scientific.Google Scholar
First citation Strukov, B. A. & Levanyuk, A. P. (1998). Ferroelectric phenomena in crystals. Berlin: Springer.Google Scholar
First citation Tahvonen, P. E. (1947). X-ray structure of potassium nitrate. Ann. Acad. Sci. Fenn. Ser. A, 44–51.Google Scholar
First citation Tokunaga, M. (1987). Two different mechanisms of the Curie–Weiss dielectric susceptibility in displacive-type ferroelectrics. J. Phys. Soc. Jpn, 56, 1653–1656.Google Scholar
First citation Tolédano, J.-C., Schneck, J. & Errandonea, G. (1986). Incommensurate phase of barium sodium niobate. In Incommensurate phases in dielectric materials, edited by R. Blinc & A. P. Levanyuk, pp. 233–252. Amsterdam: North-Holland.Google Scholar
First citation Tolédano, J.-C. & Tolédano, P. (1980). Order parameter symmetries and free-energy expansions for purely ferroelastic transitions. Phys. Rev. B, 21, 1139–1172.Google Scholar
First citation Tolédano, J.-C. & Tolédano, P. (1987). The Landau theory of phase transitions. Singapore: World Scientific.Google Scholar
First citation Tolédano, P. & Dmitriev, V. (1996). Reconstructive phase transitions. Singapore: World Scientific.Google Scholar
First citation Tolédano, P. & Tolédano, J.-C. (1976). Order parameter symmetries for ferroelectric nonferroelastic transitions. Phys. Rev. B, 14, 3097–3109.Google Scholar
First citation Tolédano, P. & Tolédano, J.-C. (1977). Order parameter symmetries for the phase transitions of nonmagnetic secondary and higher order ferroics. Phys. Rev. B, 16, 386–407.Google Scholar
First citation Tolédano, P. & Tolédano, J.-C. (1982). Non-ferroic phase transitions. Phys. Rev. B, 25, 1946–1964.Google Scholar
First citation Unoki, H. & Sakudo, T. (1967). Electron spin resonance of Fe+3 in strontium titanate with specific reference to the 110 K phase transition. J. Phys. Soc. Jpn, 23, 546–552.Google Scholar
First citation Van der Waals, J. D. (1873). PhD thesis, University of Leiden.Google Scholar
First citation Volkov, A. A., Kozlov, G. V., Mirzoyants, G. I. & Petzelt, J. (1985). Submicron dielectric spectroscopy of superionic conductors. Jpn. J. Appl. Phys. 24, Suppl. 24–2, 531–533.Google Scholar
First citation Wadhawan, V. K. (2000) Introduction to ferroic materials. Australia: Gordon and Breach Science Publishers.Google Scholar
First citation Wang, Y., Shen, H., Zhu, J., Xu, Z., Gu, M., Niu, Z. & Zhang, Z. (1987). Ultrasonic anomaly in YBa2Cu3O7−x at 235 K. J. Phys. Condens. Mat. 20, L665.Google Scholar
First citation Weiss, P. (1907). L'hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Radium, 6, 661–690.Google Scholar
First citation Weitzenböck, R. (1923). Invariantentheorie. Groningen: Noordhof.Google Scholar
First citation Western, A. B., Baker, A. G., Bacon, C. R. & Schmidt, V. H. (1978). Pressure-induced critical point in the ferroelectric phase transition in KH2PO4. Phys. Rev. B, 17, 4461–4473.Google Scholar
First citation Weyl, H. (1946). The classical groups. Princeton: UP.Google Scholar
First citation Windsch, W. & Volkel, G. (1980). EPR investigation of the dynamics of ferroelectric tris-sarcosine calcium chloride. Ferroelectrics, 24, 195–202.Google Scholar
First citation Wondre, F. R. (1977). Unpublished. Cited in Scott, J. F. (1978). Spectroscopy of magnetoelectric BaMnF4 and ferroelastic NdP5O14. Ferroelectrics, 20, 69–74.Google Scholar
First citation Worlock, J. M. (1971). Light scattering studies of structural phase transitions. In Structural phase transitions and soft modes, edited by E. Samuelsen, E. Andersen & Z. Feder, pp. 329–370. Oslo: Universitetsforlaget.Google Scholar
First citation Zhang, M.-S., Chen, Q., Sun, D., Ji, R.-F., Qin, Z.-K., Yu, Z. & Scott, J. F. (1988). Raman studies of phonon anomalies at 235 K in YBa2Cu3O7−x. Solid State Commun. 65, 487–490; see also Huang et al. (1987[link]).Google Scholar