
3.1. STRUCTURAL PHASE TRANSITIONS

change sign when one passes from one domain state to the other.
Since there is no intermediate group between G and F, there are
no secondary tensor parameters.

Example 3.1.3.4.2. Phase transitions in barium titanate
(BaTiO3). We shall illustrate the solution of the inverse Landau
problem and the need to correlate the crystallographic system
with the Cartesian crystallophysical coordinate system. The
space-group type of the parent phase is G ¼ Pm3m, and those of
the three ferroic phases are F

ð1Þ
1 ¼ P4mm, F

ð2Þ
1 ¼ Cm2m,

F
ð3Þ
1 ¼ R3m, all with one formula unit in the primitive unit cell.
This information is not complete. To perform mode analysis,

we must specify these space groups by saying that the lattice
symbol P in the first case and the lattice symbol R in the third
case are given with reference to the cubic crystallographic basis
(a; b; c), while lattice symbol C in the second case is given with
reference to crystallographic basis ½ða � bÞ; ða þ bÞ; c�. If we now
identify vectors of the cubic crystallographic basis with vectors of
the Cartesian basis by a ¼ aex, b ¼ aey, c ¼ aez, where ex, ey, ez

are three orthonormal vectors, we can see that the corresponding
point groups are F

ð1Þ
1 ¼ 4zmxmxy, F

ð2Þ
1 ¼ mxy2xymz, F

ð3Þ
1 ¼ 3pmxy.

Notice that without specification of crystallographic bases one
could interpret the point group of the space group Cm2m as
mx2ymz. Bases are therefore always specified in lattices of equi-
translational subgroups of the space groups that are available in
the software GI?KoBo-1, where we can check that all three
symmetry descents are equitranslational.

In Table 3.1.3.1, we find that these three ferroic subgroups are
epikernels of the R-irep �� ¼ T1u with the following principal
tensor components: P3, P1 ¼ P2, P1 ¼ P2 ¼ P3, respectively.
Other principal tensor parameters can be found in the main
tables of the software GI?KoBo-1. The knowledge of the
representation �� allows one to perform soft-mode analysis (see
e.g. Rousseau et al., 1981).

For the tetragonal ferroelectric phase with F1 ¼ 4zmxmy, we
find in Fig. 3.1.3.1 an intermediate group L1 ¼ 4z=mzmxmxy. In
Table 3.1.3.1, we check that this is an epikernel of the R-irep Eg

with secondary tensor parameter �u3. This phase is a full (proper)
ferroelectric and partial ferroelastic one.

More details about symmetry aspects of structural phase
transitions can be found in monographs by Izyumov & Syro-
miatnikov (1990), Kociński (1983, 1990), Landau & Lifshitz
(1969), Lyubarskii (1960), Tolédano & Dmitriev (1996) and
Tolédano & Tolédano (1987). Group–subgroup relations of space
groups are treated extensively in IT A1 (2003).

3.1.4. Example of a table for non-equitranslational phase
transitions

By J.-C. Tolédano

In the preceding Section 3.1.3, a systematic tabulation of possible
symmetry changes was provided for the class of equitranslational
phase transitions. This tabulation derives from the principles
described in Section 3.1.2, and relates the enumeration of the
symmetry changes at structural transitions to the characteristics
of the irreducible representations of the space group G of the
‘parent’ (highest-symmetry) phase adjacent to the transition.
Systematic extension of this type of tabulation to the general case
of transitions involving both a decrease of translational and of
point-group symmetry has been achieved by several groups
(Tolédano & Tolédano, 1976, 1977, 1980, 1982; Stokes & Hatch,
1988). The reader can refer, in particular, to the latter reference
for an exhaustive enumeration of the characteristics of possible
transitions. An illustration of the results obtained for a restricted
class of parent phases (those associated with the point symmetry
4=m and to a simple Bravais lattice P) is presented here.

In order to clarify the content Table 3.1.4.1, let us recall (cf.
Section 3.1.2) that Landau’s theory of continuous phase transi-
tions shows that the order parameter of a transition transforms
according to a physically irreducible representation of the space
group G of the high-symmetry phase of the crystal. A physically
irreducible representation is either a real irreducible repre-
sentation of G or the direct sum of two complex-conjugate irre-
ducible representations of G. To classify the order-parameter
symmetries of all possible transitions taking place between a
given parent (high-symmetry) phase and another (low-
symmetry) phase, it is therefore necessary, for each parent space
group, to list the various relevant irreducible representations.

Each irreducible representation of a given space group can be
denoted �nðk

�Þ and identified by two quantifies. The star k�,
represented by a vector linking the origin of reciprocal space to a
point of the first Brillouin zone, specifies the translational
symmetry properties of the basis functions of �nðk

�Þ. The
dimension of �nðk

�Þ is equal to the number of components of the
order parameter of the phase transition considered. A given
space group has an infinite number of irreducible representations.
However, physical considerations restrict a systematic enumera-
tion to only a few irreducible representations. The restrictions
arise from the fact that one focuses on continuous (or almost
continuous) transitions between strictly periodic crystal struc-
tures (i.e. in particular, incommensurate phases are not consid-
ered), and have been thoroughly described previously (Tolédano
& Tolédano, 1987, and references therein).

3.1.5. Microscopic aspects of structural phase transitions and soft
modes

By J. F. Scott

3.1.5.1. Introduction

Phase transitions in crystals are most sensitively detected via
dynamic techniques. Two good examples are ultrasonic attenua-
tion and internal friction. Unfortunately, while often exquisitely
sensitive to subtle second-order phase transitions [e.g. the work
of Spencer et al. (1970) on BaMnF4], they provide no real
structural information on the lattice distortions that occur at such
phase transitions, or even convincing evidence that a real phase
transition has occurred (e.g. transition from one long-range
thermodynamically stable ordered state to another). It is not
unusual for ultrasonic attenuation to reveal a dozen reproducible
anomalies over a small temperature range, none of which might
be a phase transition in the usual sense of the phrase. At the other
extreme are detailed structural analyses via X-ray or neutron
scattering, which give unambiguous lattice details but often
totally miss small, nearly continuous rigid rotations of light ions,
such as hydrogen bonds or oxygen or fluorine octahedra or
tetrahedra. Intermediate between these techniques are phonon
spectroscopies, notably infrared (absorption or reflection) and
Raman techniques. The latter has developed remarkably over the
past thirty years since the introduction of lasers and is now a
standard analytical tool for helping to elucidate crystal structures
and phase transitions investigated by chemists, solid-state
physicists and materials scientists.

3.1.5.2. Displacive phase transitions

3.1.5.2.1. Landau–Devonshire theory

Landau (1937) developed a simple mean-field theory of phase
transitions which implicitly assumes that each atom or ion in a
system exerts a force on the other particles that is independent of
the distance between them (see Section 3.1.2.2). Although this is
a somewhat unphysical crude approximation to the actual forces,
which are strongly dependent upon interparticle spacings, it
allows the forces of all the other particles in the system to be
replaced mathematically by an effective ‘field’, and for the
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resulting equations to be solved exactly. This mathematical
simplicity preserves the qualitative features of the real physical
system and its phase transition without adding unnecessary
cumbersome mathematics and had earlier been used to great
advantage for fluids by Van der Waals (1873) and for magnetism
by Weiss (1907). Landau’s theory is a kind of generalization of
those earlier theories. In it he defines an ‘order parameter’ x, in
terms of which most physical quantities of interest may be
expressed via free energies. In a ferromagnet, the order para-
meter corresponds to the net magnetization; it is zero above the
Curie temperature Tc and increases monotonically with
decreasing temperature below that temperature. In a liquid–gas
phase transition the order parameter is the difference in density
in the gas and liquid phases for the fluid.

Devonshire independently developed an equivalent theory for
ferroelectric crystals around 1953 (Devonshire, 1954). For
ferroelectrics, the order parameter is the spontaneous dielectric
polarization P. In both his formalism and that of Landau, the
ideas are most conveniently expressed through the free energy of
the thermodynamic system:

FðP;TÞ ¼ AðT � TcÞP
2 þ BP4 þ CP6; ð3:1:5:1aÞ

where A and C are positive quantities and B may have either sign.
Scott (1999) shows that C changes sign at ferroelectric-to-

superionic conducting transition temperatures. As shown in Fig.
3.1.5.1, minimization of the free energy causes the expectation
value of P to go from zero above the Curie temperature to a
nonzero value below. If B is positive the transition is continuous
(‘second-order’), whereas if B is negative, the transition is
discontinuous (‘first-order’), as shown in Fig. 3.1.5.2. The coeffi-
cient B may also be a function of pressure p or applied electric
field E and may pass through zero at a critical threshold value of
p or E. Such a point is referred to as a ‘tricritical point’ and is
marked by a change in the order of the transition from first-order
to second-order. The term ‘tri-critical’ originates from the fact
that in a three-dimensional graph with coordinates temperature
T, pressure p and applied field E, there are three lines marking
the ferroelectric–paraelectric phase boundary that meet at a
single point. Crossing any of these three lines produces a
continuous phase transition (Fig. 3.1.5.3).

3.1.5.2.2. Soft modes

Minimization of the free energy above leads to the dependence
of spontaneous polarization P upon temperature given by
PðTÞ ¼ Pð0Þ½ðTc � TÞ=Tc� for continuous transitions. In the more
general case discussed by Landau, the polarization P is replaced
by a generic ‘order parameter’ ’ðTÞ with the same dependence.
Cochran’s contribution (1960, 1961) was to show that for
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Table 3.1.4.1. Possible symmetry changes across transitions from a parent phase with space group P4=m, P42=m, P4=n, P42=n, I4=m or I41=a

Equitranslational symmetry changes are not included (cf. Section 3.1.3). The coordinates of the points in the second column are referred to the primitive unit cell of the
reciprocal lattice. The terms used in the fifth column are introduced in Section 3.1.1. The last column is characteristic of non-equitranslational transitions.

Parent
space
group

Irreducible representation

Possible
low-symmetry
space groups

Macroscopic
characteristics of
the transition

Change in
the number
of atoms
per primitive
unit cell

Brillouin
zone
point

Dimension
of the order
parameter

P4=m 1
2 ;

1
2 ; 0 2 P2=m; P2=b Ferroelastic 2

1 P4=m; P4=n Non-ferroic 2
0; 0; 1

2 2 P21=m Ferroelastic 2
1 P4=m; P42=m Non-ferroic 2

1
2 ;

1
2 ;

1
2 2 B2=m Ferroelastic 2

1 I4=m Non-ferroic 2
0; 1

2 ;
1
2 2 B2=m Ferroelastic 2

1 I4=m Non-ferroic 4
0; 1

2 ; 0 2 P2=m; P2=b Ferroelastic 2
1 P4=m; P4=n Non-ferroic 4

P42=m 1
2 ;

1
2 ; 0 2 P2=m; P2=b Ferroelastic 2

1 P42=n; P42=m Non-ferroic 2
0; 0; 1

2 2 P21=m Ferroelastic 2
2 P41; P43 Ferroelectric 2

1
2 ;

1
2 ;

1
2 2 B2=m Ferroelastic 2

1 I4=m Non-ferroic 2
0; 1

2 ;
1
2 2 B2=m Ferroelastic 2

2 P41=a Non-ferroic 2
0; 1

2 ; 0 2 P2=m; P2=b Ferroelastic 2
2 P42=m; P42=n Non-ferroic 2

P4=n 1
2 ;

1
2 ; 0 2 P2=b Ferroelastic 2

2 P4 Ferroelectric 2
0; 0; 1

2 2 P21=b Ferroelastic 2
1 P4=n; P42=n Non-ferroic 2

1
2 ;

1
2 ;

1
2 2 B2=b Ferroelastic 2

2 I4 Ferroelectric 2
P42=n 1

2 ;
1
2 ; 0 2 P2=b Ferroelastic 2

0; 0; 1
2 2 P21=b Ferroelastic 2

2 P41; P43 Ferroelectric 2
I4=m 1

2 ;�
1
2 ;�

1
2 2 P21=m; P21=b Ferroelastic 2

1 P4=m; P42=m; P4=n; P42=n Non-ferroic 2
1
2 ;

1
2 ; 0 2 B2=m; B2=b Ferroelastic 2

2 P4=m; P42=m; P4=n; P42=n Non-ferroic 4
1
2 ; 0; 0 4 B2=m Ferroelastic 2

4 P�11 Ferroelastic 8
4 I4=m; I41=a Non-ferroic 8

3
4 ;

1
4 ;�

1
4 2 I4=m; I41=a Non-ferroic 4

I41=a 1
2 ;�

1
2 ;�

1
2 2 P21=b Ferroelastic 2

1
2 ; 0; 0 4 I �44 Higher-order ferroic 8

4 P�11 Ferroelastic 2
4 P�11; B2=b Ferroelastic 4
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continuous ‘displacive’ (as opposed to ‘order–disorder’) transi-
tions, this order parameter is (or is proportional to) a normal
mode of the lattice. One normal mode of the crystal must, in
Cochran’s theory, literally soften: the generalized force constant
for this mode weakens as a function of temperature, and its
frequency consequently decreases. This soft-mode theory
provided an important step from the macroscopic description of
Landau and Devonshire to a microscopic theory, and in parti-
cular, to vibrational (phonon) spectroscopy.

Cochran illustrated this theory using a ‘shell’ model in which
the electrons surrounding an ion were approximated by a rigid
sphere; shell–shell force constants were treated as well as shell–
core and core–core terms, in the general case. The initial appli-
cation was to PbTe and other rock-salt cubic structures that
undergo ferroelectric structural distortions.

For this simple case, the key equations relate the optical
phonon frequencies of long wavelength to two terms: a short-
range force constant R0

0 and a long-range Coulombic term. It is
important that in general neither of these terms has a patholo-
gical temperature dependence; in particular, neither vanishes at
the Curie temperature. Rather it is the subtle cancellation of the
two terms at Tc that produces a ‘soft’ transverse optical phonon.

The longitudinal optical phonon frequency !LOðTÞ is positive
definite and remains finite at all temperatures:

�!2
LO ¼ R0

0 þ
8�Z2e2

9"VðTÞ
; ð3:1:5:1bÞ

where � is a reduced mass for the normal mode; Ze is an effective
charge for the mode, related to the valence state of the ions
involved; " is the high-frequency dielectric constant and VðTÞ is
the unit-cell volume, which is a function of temperature due to
thermal expansion.

By comparison, the transverse optical phonon frequency

�!2
TO ¼ R0

0 �
4�Z2e2

3"VðTÞ
ð3:1:5:1cÞ

can vanish accidentally when VðTÞ reaches a value that permits
cancellation of the two terms. Note that this does not require any
unusual temperature dependence of the short-range interaction
term R0

0. This description appears to satisfy all well studied
ferroelectrics except for the ‘ultra-weak’ ones epitomized by
TSCC (tris-sarcosine calcium chloride), in which the Coulombic
term in (3.1.5.1b) and (3.1.5.1c) is very small and the pathological
dependence occurs in R0

0. This leads to a situation in which the
longitudinal optical phonon is nearly as soft as is the transverse
branch.

Subsequent to Cochran’s shell-model developments, Cowley
(1962, 1964, 1970) replaced this phenomenological modelling
with a comprehensive many-body theory of phonon anharmo-
nicity, in which the soft-mode temperature is dominated by
Feynman diagrams emphasizing renormalization of phonon self-
energies due to four-phonon interactions (two in and two out).
This contrasts with the three-phonon interactions that dominate
phonon linewidths under most conditions.

It is worth noting that the soft optical phonon branch is
necessarily always observable in the low-symmetry phase via
Raman spectroscopy in all 32 point-group symmetries. This was
first proved by Worlock (1971), later developed in more detail by
Pick (1969) and follows group-theoretically from the fact that the
vibration may be regarded as a dynamic distortion of symmetry
�i which condenses at Tc to produce a static distortion of the
same symmetry. Hence the vibration in the distorted phase has
symmetry given by the product �i � �i, which always contains
the totally symmetric representation �1 for any choice of �i. If �i

is non-degenerate, its outer product with itself will contain only
�1 and there will be a single, totally symmetric soft mode; if �i is
degenerate, there will be two or three soft modes of different
symmetries, at least one of which is totally symmetric.

Since the totally symmetric representation is Raman-active for
all 32 point-group symmetries, this implies that the soft mode is
always accessible to Raman spectroscopy at least in the distorted,
low-symmetry phase of the crystal.

3.1.5.2.3. Strontium titanate, SrTiO3

Among the perovskite oxides that are ferroelectric insulators,
barium titanate has received by far the most attention from the
scientific community since its independent characterization in
several countries during World War II. The discovery of a
ferroelectric that was robust, relatively inert (not water-soluble)
and without hydrogen bonding was a scientific breakthrough, and
its large values of dielectric constant and especially spontaneous
polarization are highly attractive for devices. Although not
ferroelectric in pure bulk form, strontium titanate has received
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Fig. 3.1.5.1. Free energy FðP;TÞ and order parameter PðTÞ from the Landau–
Devonshire theory [equation (3.1.5.1a)] for a continuous second-order
ferroelectric phase transition [coefficient B positive in equation (3.1.5.1a)].
The insert shows the temperature dependence of the order parameter, i.e. the
expectation value of the displacement xðTÞ.

Fig. 3.1.5.2. Free energy FðP;TÞ and order parameter PðTÞ from the Landau–
Devonshire theory [equation (3.1.5.1a)] for a discontinuous first-order
ferroelectric phase transition [coefficient B negative in equation (3.1.5.1a)].
T1 is the temperature (see Fig. 3.1.2.6) below which a secondary minimum
appears in the free energy.

Fig. 3.1.5.3. Three-dimensional graph of phase boundaries as functions of
temperature T, pressure p and applied electric field E, showing a tricritical
point where three continuous phase boundaries intersect.
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the second greatest amount of attention of this family over the
past thirty years. It also provides a textbook example of how
optical spectroscopy can complement traditional X-ray crystal-
lographic techniques for structural determination.

Fig. 3.1.5.4 shows the structure of strontium titanate above and
below the temperature (T0 ¼ 105 K) of a non-ferroelectric phase
transition. Note that there is an out-of-phase distortion of oxygen
ions in adjacent primitive unit cells (referred to the single
formula group ABO3 in the high-temperature phase). This out-
of-phase displacement approximates a rigid rotation of oxygen
octahedra about a [100], [010] or [001] cube axis, except that the
oxygens actually remain in the plane of the cube faces. We note
three qualitative aspects of this distortion: Firstly, it doubles the
primitive unit cell from one formula group to two; this will
approximately double the number of optical phonons of very

long wavelength (q ¼ 0) permitted in infrared and/or Raman
spectroscopy. Secondly, it makes the gross crystal class tetragonal,
rather than cubic (although in specimens cooled through the
transition temperature in the absence of external stress, we might
expect a random collection of domains with tetragonal axes along
the original [100], [010], [001] cube axes, which will give macro-
scopic cubic properties to the multidomain aggregate). Thirdly,
the transition is perfectly continuous, as shown in Fig. 3.1.5.5,
where the rotation angle of the oxygen octahedra about the cube
axis is plotted versus temperature.

Fig. 3.1.5.4 does not correspond at all to the structure inferred
earlier from X-ray crystallographic techniques (Lytle, 1964). The
very small, nearly rigid rotation of light ions (oxygens) in
multidomain specimens caused the X-ray study to overlook the
primary characteristic of the phase transition and to register
instead only the unmistakable change in the c=a ratio from unity.
Thus, the X-ray study correctly inferred the cubic–tetragonal
characteristic of the phase transition but it got both the space
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Fig. 3.1.5.4. Structure of strontium titanate above (undisplaced ions) and
below (arrows) its anti-ferrodistortive phase transition at ca. 105 K. Below
this temperature, the cubic primitive cell undergoes a tetragonal distortion
and also doubles along the [001] cubic axis (domains will form along [100],
[010] and [001] of the original cubic lattice). The ionic displacements
approximate a rigid rotation of oxygen octahedra, out-of-phase in adjacent
unit cells, except that the oxygens actually remain on the cube faces, so that a
very small Ti—O bond elongation occurs.

Fig. 3.1.5.5. Rotation angle versus temperature for the oxygen octahedron
distortion below 105 K in strontium titanate described in Fig. 3.1.5.4. The
solid curve is a mean-field least-squares fit to an S ¼ 1 Brillouin function.

Fig. 3.1.5.6. Raman spectra of strontium titanate below its cubic–tetragonal
phase transition temperature. These features disappear totally above the
phase transition temperature, thereby providing a vivid indication of a rather
subtle phase transition.

Fig. 3.1.5.7. Temperature dependence of phonon branches observed in the
Raman spectra of tetragonal strontium titanate.
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group and the size of the primitive cell wrong. The latter error has
many serious implications for solid-state physicists: For example,
certain electronic transitions from valence to conduction bands
are actually ‘direct’ (involving no change in wavevector) but
would have erroneously been described as ‘indirect’ with the
structure proposed by Lytle. More serious errors of interpreta-
tion arose with the microscopic mechanisms of ultrasonic loss
proposed by Cowley based upon Lytle’s erroneous structure.

The determination of the correct structure of strontium tita-
nate (Fig. 3.1.5.4) was actually made via EPR studies (Unoki &
Sakudo, 1967) and confirmed via Raman spectroscopy (Fleury et
al., 1968). The presence of ‘extra’ q ¼ 0 optical phonon peaks in
the Raman spectra below T0 (Fig. 3.1.5.6) is simple and unmis-
takable evidence of unit-cell multiplication. The fact that two
optical phonon branches have frequencies that decrease
continuously to zero (Fig. 3.1.5.7) as the transition temperature is
approached from below shows further that the transition is
‘displacive’, that is, that the structures are perfectly ordered both
above and below the transition temperature. This is a classic
example of Cochran’s soft-mode theory discussed above.

3.1.5.2.4. Lanthanum aluminate, LaAlO3

A structural distortion related to that in strontium titanate is
exhibited in lanthanum aluminate at approximately 840 K. As in
strontium titanate, the distortion consists primarily of a nearly
rigid rotation of oxygen octahedra. However, in the lanthanide
aluminates (including NdAlO3 and PrAlO3) the rotation is about
the [111] body diagonal(s) of the prototype cubic structure. The
rotation, shown in Fig. 3.1.5.8, is out-of-phase in adjacent cubic
unit cells, analogous to that in strontium titanate.

Historically, this phase transition and indeed the structure of
lanthanum aluminate were incorrectly characterized by X-ray
crystallography (Geller & Bala, 1956) and correctly assigned by
Scott (1969) and Scott & Remeika (1970) via Raman spectro-
scopy. The causes were as in the case of strontium titanate,
namely that it is difficult to assess small, nearly rigid rotations of
light ions in twinned specimens. In the case of lanthanum
aluminate, Geller and Bala incorrectly determined the space
group to be R�33m (D5

3d), rather than the correct R�332=c (D6
3d)

shown in Fig. 3.1.5.8, and they had the size of the primitive unit
cell as one formula group rather than two.

3.1.5.2.5. Potassium nitrate, KNO3

Potassium nitrate has a rather simple phase diagram, repro-
duced in Fig. 3.1.5.9. Two different structures and space groups
were proposed for the ambient temperature phase I: Shinnaka
(1962) proposed D6

3d (R�332=c) with two formula groups per
primitive cell (Z ¼ 2), whereas Tahvonen (1947) proposed D5

3d

(R�33m) with one formula group per primitive cell. In fact, both are
wrong. The correct space group is that of Nimmo & Lucas (1973):
D6

3d (R�332=c) with one formula group per primitive cell. Again,
Raman spectroscopy of phonons shows that the Tahvonen
structure predicts approximately twice as many spectral lines as
can be observed. Balkanski et al. (1969) tried creatively but
unsuccessfully to account for their spectra in terms of Tahvonen’s
space-group symmetry assignment for this crystal; later Scott &
Pouligny (1988) showed that all spectra were compatible with the
symmetry assigned by Nimmo and Lucas. In this case, in contrast
to the perovskites strontium titanate and lanthanum aluminate,
the confusion regarding space-group symmetry arose from the
large degree of structural disorder found in phase I of KNO3. The
structures of phases II and III are unambiguous and are,
respectively, aragonite D16

2h (Pnma) with Z ¼ 4 and C5
3v (R3m)

with Z = 1.

3.1.5.2.6. Lanthanum pentaphosphate

The lanthanide pentaphosphates (La, Pr, Nd and TbP5O14)
consist of linked ribbons of PO4 tetrahedra. In each material a
structural phase transition occurs from a high-temperature D7

2h

(Pncm) point-group symmetry orthorhombic phase to a C2h
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Fig. 3.1.5.8. (a) Structure of lanthanum aluminate above (undistorted) and
below (arrows) its cubic–rhombohedral phase transition near 840 K. As in
strontium titanate (Figs. 3.1.5.4–3.1.5.7), there is a nearly rigid rotation of
oxygen octahedra (the oxygen ions actually remain on the cube faces);
however, in the lanthanide aluminates (Ln = La, Pr, Nd) the rotation is about
a cube [111] body diagonal, so that the resulting structure is rhombohedral,
rather than tetragonal. The primitive unit cell doubles along the cubic [111]
axis; domains will form with the unique axis along all originally equivalent
body diagonals of the cubic lattice. (b) Optical phonon frequences versus
temperature in lanthanum aluminate.

Fig. 3.1.5.9. Phase diagram of potassium nitrate, KNO3.
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(P21=c) monoclinic phase. The macroscopic order parameter for
this transition is simply the monoclinic angle ’, or more precisely
(’� 90�). In this family of materials, the X-ray crystallography
was unambiguous in its determination of space-group symmetries
and required no complementary optical information. However,
the Raman studies (Fox et al., 1976) provided two useful pieces of
structural information. First, as shown in Fig. 3.1.5.10, they
showed that the phase transition is entirely displacive, with no
disorder in the high-symmetry phase; second, they showed that
there is a microscopic order parameter that in mean field is
proportional to the frequency of a ‘soft’ optical phonon of long
wavelength (q ¼ 0). This microscopic order parameter is in fact
the eigenvector of that soft mode (normal coordinate), which
approximates a rigid rotation of phosphate tetrahedra.

3.1.5.2.7. Barium manganese tetrafluoride

BaMnF4 is an unusual material whose room-temperature
structure is illustrated in Fig. 3.1.5.11(a). It consists of MnF6

octahedra, linked by two shared corners along the polar a axis,
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Fig. 3.1.5.10. (a) ‘Soft’ optical phonon frequency versus temperature in
LaP5O14, showing displacive character of the phase transition. Large acousto-
optic interaction prevents the optical phonon frequency from reaching zero
at the transition temperature, despite the second-order character of the
transition. (b) Lanthanum pentaphosphate structure, showing linked
‘ribbons’ of phosphate tetrahedra.

Fig. 3.1.5.11. (a) Structure of barium metal fluoride BaMF4 (M = Co, Mn, Mg,
Zn, Ni) at ambient temperature (300 K). (b) Raman spectroscopy of barium
manganese fluoride above and below its structural phase transition
temperature, ca. 251 K. (c) Temperature dependence of lower energy
phonons in (b).
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with ribbons of such octahedra rather widely separated by the
large ionic radius barium ions in the b direction. The resulting
structure is, both magnetically and mechanically, rather two-
dimensional, with easy cleavage perpendicular to the b axis and
highly anisotropic electrical (ionic) conduction.

Most members of the BaMF4 family (M = Mg, Zn, Mn, Co, Ni,
Fe) have the same structure, which is that of orthorhombic C2v

(2mm) point-group symmetry. These materials are all ferro-
electric (or at least pyroelectric; high conductivity of some makes
switching difficult to demonstrate) at all temperatures, with an
‘incipient’ ferroelectric Curie temperature extrapolated from
various physical parameters (dielectric constant, spontaneous
polarization etc.) to lie 100 K or more above the melting point
(ca. 1050 K). The Mn compound is unique in having a low-
temperature phase transition. The reason is that Mnþ2 represents
(Shannon & Prewitt, 1969) an end point in ionic size (largest) for
the divalent transition metal ions Mn, Zn, Mg, Fe, Ni, Co; hence,
the Mn ion and the space for it in the lattice are not a good match.
This size mismatch can be accommodated by the r.m.s. thermal
motion above room temperature, but at lower temperatures a
structural distortion must occur.

This phase transition was first detected (Spencer et al., 1970)
via ultrasonic attenuation as an anomaly near 255 K. This
experimental technique is without question one of the most
sensitive in discovering phase transitions, but unfortunately it
gives no direct information about structure and often it signals
something that is not in fact a true phase transition (in BaMnF4

Spencer et al. emphasized that they could find no other evidence
that a phase transition occurred).

Raman spectroscopy was clearer (Fig. 3.1.5.11b), showing
unambiguously additional vibrational spectra that arise from a
doubling of the primitive unit cell. This was afterwards confirmed
directly by X-ray crystallography at the Clarendon Laboratory,
Oxford, by Wondre (1977), who observed superlattice lines
indicative of cell doubling in the bc plane.

The real structural distortion near 250 K in this material is
even more complicated, however. Inelastic neutron scattering at
Brookhaven by Shapiro et al. (1976) demonstrated convincingly
that the ‘soft’ optical phonon lies not at (0; 1=2; 1=2) in the
Brillouin zone, as would have been expected for the bc-plane cell
doubling suggested on the basis of Raman studies, but at
(0:39; 1=2; 1=2). This implies that the actual structural distortion
from the high-temperature C12

2v (Cmc21) symmetry does indeed
double the primitive cell along the bc diagonal but in addition
modulates the lattice along the a axis with a resulting repeat
length that is incommensurate with the original (high-tempera-
ture) lattice constant a. The structural distortion microscopically
approximates a rigid fluorine octahedra rotation, as might be
expected. Hence, the chronological history of developments for
this material is that X-ray crystallography gave the correct lattice
structure at room temperature; ultrasonic attenuation revealed a
possible phase transition near 250 K; Raman spectroscopy
confirmed the transition and implied that it involved primitive

cell doubling; X-ray crystallography confirmed directly the cell
doubling; and finally neutron scattering revealed an unexpected
incommensurate modulation as well. This interplay of experi-
mental techniques provides a rather good model as exemplary for
the field. For most materials, EPR would also play an important
role in the likely scenarios; however, the short relaxation times
for Mn ions made magnetic resonance of relatively little utility in
this example.

3.1.5.2.8. Barium sodium niobate

The tungsten bronzes represented by Ba2NaNb5O15 have
complicated sequences of structural phase transitions. The
structure is shown in Fig. 3.1.5.12 and, viewed along the polar
axis, consists of triangular, square and pentagonal spaces that
may or may not be filled with ions. In barium sodium niobate, the
pentagonal channels are filled with Ba ions, the square channels
are filled with sodium ions, and the triangular areas are empty.

The sequence of phases is shown in Fig. 3.1.5.13. At high
temperatures (above Tc ¼ 853 K) the crystal is tetragonal and
paraelectric (P4=mbm ¼ D5

4h). When cooled below 853 K it
becomes ferroelectric and of space group P4bm ¼ C2

4v (still
tetragonal). Between ca. 543 and 582 K it undergoes an incom-
mensurate distortion. From 543 to ca. 560 K it is orthorhombic
and has a ‘1q’ modulation along a single orthorhombic axis. From
560 to 582 K it has a ‘tweed’ structure reminiscent of metallic
lattices; it is still microscopically orthorhombic but has a short-
range modulated order along a second orthorhombic direction
and simultaneous short-range modulated order along an ortho-
gonal axis, giving it an incompletely developed ‘2q’ structure.

As the temperature is lowered still further, the lattice becomes
orthorhombic but not incommensurate from 105–546 K; below
105 K it is incommensurate again, but with a microstructure quite
different from that at 543–582 K. Finally, below ca. 40 K it
becomes macroscopically tetragonal again, with probable space-
group symmetry P4nc (C6

4v) and a primitive unit cell that is four
times that of the high-temperature tetragonal phases above
582 K.

This sequence of phase transitions involves rather subtle
distortions that are in most cases continuous or nearly contin-
uous. Their elucidation has required a combination of experi-
mental techniques, emphasizing optical birefringence (Schneck,
1982), Brillouin spectroscopy (Oliver, 1990; Schneck et al., 1977;
Tolédano et al., 1986; Errandonea et al., 1984), X-ray scattering,
electron microscopy and Raman spectroscopy (Shawabkeh &
Scott, 1991), among others. As with the other examples described
in this chapter, it would have been difficult and perhaps impos-
sible to establish the sequence of structures via X-ray techniques
alone. In most cases, the distortions are very small and involve
essentially only the oxygen ions.

3.1.5.2.9. Tris-sarcosine calcium chloride (TSCC)

Tris-sarcosine calcium chloride has the structure shown in Fig.
3.1.5.14. It consists of sarcosine molecules of formula
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Fig. 3.1.5.12. Structure of the tungsten bronze barium sodium niobate
Ba2NaNb5O15 in its highest-temperature P4=mbm phase above 853 K.

Fig. 3.1.5.13. Sequence of phases encountered with raising or lowering the
temperature in barium sodium niobate.
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CH3NHCH2COOH in which the hydrogen ion comes off the
COOH group and is used to hydrogen bond the nitrogen ion to a
nearby chlorine, forming a zwitter ion. As is illustrated in this
figure, this results in a relatively complex network of N—H� � �Cl
bonds. The COO� ion that results at the end group of each
sarcosine is ionically bonded to adjacent calcium ions. The
resulting structure is highly ionic in character and not at all that
of a ‘molecular crystal’. The structure at ambient temperatures is
Pnma (D16

2h) with Z ¼ 4; below 127 K it distorts to Pna21 (C9
2v)

with Z still 4.
It had been supposed for some years on the basis of NMR

studies of the Cl ions, as well as the conventional wisdom that
‘hydrogen-bonded crystals exhibit order–disorder phase transi-
tions’, that the kinetics of ferroelectricity at the Curie tempera-
ture of 127 K in TSCC involved disorder in the proton positions
along the N—H� � �Cl hydrogen bonds. In fact that is not correct;
even the NMR data of Windsch & Volkel (1980), originally
interpreted as order–disorder, actually show (Blinc et al., 1970) a
continuous, displacive evolution of the H-atom position along the
H� � �Cl bond with temperature, rather than a statistical averaging

of two positions, which would characterize order–disorder
dynamics. In addition, as shown in Fig. 3.1.5.15, there is (Kozlov et
al., 1983) a lightly damped ‘soft’ phonon branch in both the
paraelectric and ferroelectric phases. TSCC is in fact a textbook
example of a displacive ferroelectric phase transition. The
hydrogen bonds do not exhibit disorder in the paraelectric phase.
Rather, the transition approximates a rigid rotation of the
sarcosine molecules, which stretches the N—H� � �Cl bond
somewhat (Prokhorova et al., 1980).

3.1.5.2.10. Potassium dihydrogen phosphate, KH2PO4

Potassium dihydrogen phosphate, colloquially termed ‘KDP’,
has probably been the second most studied ferroelectric after
barium titanate. It has been of some practical importance, and the
relationship between its hydrogen bonds, shown in Fig. 3.1.5.16,
the perpendicular displacement of heavier ions (K and P) and the
Curie temperature has fascinated theoretical physicists, who
generally employ a ‘pseudo-spin model’ in which the right and
left displacements of the hydrogen ions along symmetric
hydrogen bonds (O� � �H� � �O) can be described by a fictitious spin
with up (þ1=2) and down (�1=2) states.

Unlike TSCC, discussed above, KDP has perfectly symmetric
hydrogen bonds. Therefore, one might expect that above a
sufficiently high temperature the protons can quantum-
mechanically tunnel between equivalent potential wells sepa-
rated by a shallow (and temperature-dependent) barrier. Below
TC the protons order (all to the right or all to the left) in spatial
regions that represent ferroelectric domains. This model, initially
proposed by Blinc (1960), is correct and accounts for the large
isotope shift in the Curie temperature noted for deuterated
specimens. The complication is that the spontaneous polarization
arises along a direction perpendicular to these proton displace-
ments, so the dipoles do not arise from proton displacements
directly. Instead, the proton coupling (largely Coulombic) to the
potassium and phosphorus ions causes their displacements along
the polar axis. This intricate coupling between protons along
hydrogen bonds, which undergo an order–disorder transition,
and K and P ions, which undergo purely displacive movements in
their equilibrium positions, forms the basis of the theoretical
interest in the lattice dynamics of KDP. Following Strukov &
Levanyuk (1998), we would say that arguments over whether this
transition is displacive or order–disorder are largely semantic; the
correct description of KDP is that the thermal change in occu-
pancy of the O� � �H� � �O double wells modifies the free energy in
such a way that the K and P ions undergo a displacive rearran-
gement.
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Fig. 3.1.5.14. Structure of tris-sarcosine calcium chloride,
(CH3NHCH2COOH)3CaCl2. The hydrogen ion (proton) on the COOH
group is relocated in the crystal onto the N atom to form a zwitter ion,
forming an H—N—H group that hydrogen bonds to adjacent chlorine ions.
Each nitrogen forms two such hydrogen bonds, whereas each chlorine has
three, forming a very complex network of hydrogen bonding. The phase
transition is actually displacive, involving a rather rigid rolling of whole
sarcosine molecules, which stretches the N—H bonds; it is not order–disorder
of hydrogen ions in a Cl� � �H—N double well. (The Cl� � �H—N wells are
apparently too asymmetric for that.)

Fig. 3.1.5.15. ‘Soft’ optical phonon frequencies versus temperature in both
ferroelectric and paraelectric phases of tris-sarcosine calcium chloride.

Fig. 3.1.5.16. The structure of potassium dihydrogen phosphate, KH2PO4,
showing the O� � �H� � �O hydrogen bonds.
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The difficulty comes in recognizing that the normal-mode
coordinate x corresponding to the soft mode in this case involves
protons (H ions) and K and P ions. Therefore, the free-energy
description (as in Fig. 3.1.5.17) will have partly displacive char-
acter and partly order–disorder. If the transition were purely
displacive (as in TSCC, discussed above), all the important
temperature changes would be in the shape of the free energy
FðxÞ with temperature T. Whereas if the transition were purely
order–disorder (as in NaNO2, discussed below), the shape of the
free-energy curves FðxÞ would be quite independent of T; only
the relative populations of the two sides of the double well would
be T-dependent. KDP is intermediate between these descrip-
tions. Strictly, it is ‘displacive’ in the sense that its normal mode is
a propagating mode, shown in Fig. 3.1.5.18 by Peercy’s pressure-
dependence Raman studies (Peercy, 1975a,b). If it were truly
order–disorder, the mode would be a Debye relaxation with a
spectral peak at zero frequency, independent of pressure or
temperature. Only the width and intensity would depend upon
these parameters.

As a final note on KDP, this material exhibits at ambient
pressure and zero applied electric field a phase transition that is
very slightly discontinuous. Application of modest pressure or
field produces a truly continuous transition. That is, the tricritical
point is easily accessible [at a critical field of 6 kV cm�1,
according to Western et al. (1978)].

3.1.5.2.11. Sodium nitrite, NaNO2

Sodium nitrite exhibits a purely order–disorder transition and
has been chosen for discussion to contrast with the systems in the
sections above, which are largely displacive. The mechanism of its
transition dynamics is remarkably simple and is illustrated in Fig.
3.1.5.19. There is a linear array of Na and N ions. At low
temperatures, the arrow-shaped NO2 ions (within each domain)
point in the same direction; whereas above the Curie tempera-
ture they point in random directions with no long-range order.
The flopping over of an NO2 ion is a highly nonlinear response.
Therefore the response function (spectrum) associated with this
NO2 flip-flop mode will consist of two parts: a high-frequency
peak that looks like a conventional phonon response (lightly
damped Lorentzian), plus a low-frequency Debye relaxation
(‘central mode’ peaking at zero frequency). Most of the
temperature dependence for this mode will be associated with the
Debye spectrum. The spectrum of sodium nitrite is shown in Fig.
3.1.5.20.

Particularly interesting is its phase diagram, relating struc-
ture(s) to temperature and ‘conjugate’ field applied along the
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Fig. 3.1.5.17. Double-well models [circled letters show the time-averaged
expectation values of the position xðTÞ of the order parameter at each
temperature]. (a) For purely order–disorder systems, the depth and
separation of the wells is temperature-independent; only the thermal
populations change, due to either true quantum-mechanical tunnelling
(which only occurs for H or D ions) or thermally activated hopping (for
heavier ions). (b) For purely displacive systems, all the temperature
dependence is in the relative depths of the potential wells. [For mixed
systems, such as KH2PO4, both well depth(s) and thermal populations change
with temperature.]

Fig. 3.1.5.18. Pressure dependence of the ‘soft’ optical phonon branch Raman
spectra in potassium dihydrogen phosphate (after Peercy, 1975b), showing
the displacive character of the phase transition [purely order–disorder phase
transitions cannot exhibit propagating (underdamped) soft modes].

Fig. 3.1.5.19. Structure of sodium nitrite, NaNO2. The molecularly bonded
NO2 ions are shaped like little boomerangs. At high temperatures they are
randomly oriented, pointing up or down along the polar b axis. At low
temperatures they are (almost) all pointed in the same direction (þb or �b
domains). Over a small range of intermediate temperatures their directions
have a wave-like ‘incommensurate’ modulation with a repeat length L that is
not an integral multiple of the lattice constant b.
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polar axis. As Fig. 3.1.5.21 illustrates somewhat schematically,
there are first-order phase boundaries, second-order phase
boundaries, a tricritical point and a critical end point (as in a gas–
liquid diagram). If the electric field is applied in a direction
orthogonal to the polar axis, a Lifshitz point (Fig. 3.1.5.22) may be
expected, in which the phase boundaries intersect tangentially.
The ionic conductivity of sodium nitrite has made it difficult to
make the figures in Figs. 3.1.5.21 and 3.1.5.22 precise.

3.1.5.2.12. Fast ion conductors

As exemplary of this class of materials, we discuss in this
section the silver iodide compound Ag13I9W2O8. This material
has the structure illustrated in Fig. 3.1.5.23. Conduction is via
transport of silver ions through the channels produced by the
W4O16 ions (the coordination is not that of a simple tetrahedrally
coordinated WO4 tungstate lattice).

This crystal undergoes three structural phase transitions
(Habbal et al., 1978; Greer et al., 1980; Habbal et al., 1980), as
illustrated in Fig. 3.1.5.24. The two at lower temperatures are
first-order; that at the highest temperature appears to be
perfectly continuous. Geller et al. (1980) tried to fit electrical data
for this material ignoring the uppermost transition.

As in most of the materials discussed in this review, the phase
transitions were most readily observed via optical techniques,
Raman spectroscopy in particular. The subtle distortions involve
oxygen positions primarily and are not particularly well suited to
more conventional X-ray techniques. Silver-ion disorder sets in
only above the uppermost phase transition, as indicated by the
full spectral response (as in the discussion of sodium nitrite in the
preceding section).

Infrared (Volkov et al., 1985) and Raman (Shawabkeh & Scott,
1989) spectroscopy have similarly confirmed low-temperature
phase transitions in RbAg4I5 at 44 and 30 K, in addition to the
well studied D7

3–D2
3 (R32–P321) transition at 122 K. The two

lower-temperature phases increase the size of the primitive cell,
but their space groups cannot be determined from available
optical data. The 44 K transition is signalled by the abrupt
appearance of an intense phonon feature at 12 cm�1 in both
infrared and Raman spectra.

3.1.5.2.13. High-temperature superconductors

It is useful to play Devil’s Advocate and point out difficulties
with the technique discussed, to indicate where caution might be
exercised in its application. YBa2Cu3O7�x (YBaCuO) provides
such a case. As in the case of BaMnF4 discussed in Section
3.1.5.2.7, there was strong evidence for a structural phase tran-
sition near 235 K, first from ultrasonic attenuation (Wang, 1987;
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Fig. 3.1.5.20. Raman spectra of sodium nitrite, showing diffusive Debye-like
response due to large-amplitude flopping over of nitrite ions [note that the
high-frequency phonon-like response is due to the small-amplitude motion of
this same normal mode; thus in this system N ions give rise not to 3N (non-
degenerate) peaks in the spectral response function, but to 3N þ 1].

Fig. 3.1.5.21. Phase diagram for sodium nitrite for ‘conjugate’ electric fields
applied along the polar b axis, showing triple point, tricritical point and
critical end point. (a) Schematic; (b) real system.

Fig. 3.1.5.22. Phase diagram for sodium nitrite for electric fields applied
perpendicular to the polar b axis. In this situation, a Lifshitz point is possible
where phase boundaries ‘kiss’ (touch tangentially).
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Laegreid et al., 1987) and then from Raman studies (Zhang et al.,
1988; Huang et al., 1987; Rebane et al., 1988). However, as years
passed this was never verified via neutron or X-ray scattering.
Researchers questioned (MacFarlane et al., 1987) whether indeed
a phase transition exists at such a temperature in this important
material. At present it is a controversial and occasionally
contentious issue. A difficulty is that light scattering in metals
probes only the surface. No information is obtained on the bulk.
Ultrasonic attenuation and internal friction probe the bulk, but
give scanty information on mechanisms or structure.

In the specific case of YBaCuO, the ‘extra’ phonon line (Fig.
3.1.5.25) that emerges below 235 K is now known not to be from
the superconducting YBa2Cu3O7�x material; its frequency of
644 cm�1 is higher than that of any bulk phonons in that material.
However, this frequency closely matches that of the highest
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Fig. 3.1.5.23. (a) Crystal structure of silver iodide tungstate (Ag13I9W2O8);
(b) showing conduction paths for Ag ions (after Chan & Geller, 1977).

Fig. 3.1.5.24. Evidence for three phase transitions in silver iodide tungstate:
(a) dielectric and conductivity data; (b) specific heat data; (c) Raman data.
The lower transitions, at 199 and 250 K, are first order; the upper one, at
285 K, is second order.
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LO (longitudinal optical) phonon in the semiconducting
YBa2Cu3O6þx material, suggesting that the supposed phase
transition at 235 K may be not a structural transition but instead a
chemical transition in which oxygen is lost or gained at the
surface with temperature cycling.

3.1.5.3. Low-temperature ferroelectric transitions

It has historically been difficult to establish the nature of
ferroelectric phase transitions at cryogenic temperatures. This is
simply because the coercive fields for most crystals rise as the
temperature is lowered, often becoming greater than the break-
down fields below ca. 100 K. As a result, it is difficult to
demonstrate via traditional macroscopic engineering techniques
(switching) that a material is really ferroelectric. Some authors
have proposed (e.g. Tokunaga, 1987) on theoretical grounds the
remarkable (and erroneous) conjecture that no crystals have
Curie temperatures much below 100 K. A rebuttal of this spec-
ulation is given in Table 3.1.5.1 in the form of a list of counter-
examples. References may be found in the 1990 Landolt–
Börnstein Encyclopedia of Physics (Vol. 28a). The original work
on pure cadmium titanate and on lead pyrochlore (Hulm, 1950,
1953) did not demonstrate switching, but on the basis of
more recent studies on mixed crystals Ca2�2xPb2xNb2O7 and
CaxCd1�xTiO3, it is clear that the pure crystals are ferroelectric at
and below the stated temperatures.

Hence, in Table 3.1.5.1 we see examples where X-ray structural
studies may establish the symmetries requisite for ferroelectricity
without the macroscopic switching being demonstrated. This is
the converse case to that primarily emphasized in this section (i.e.
the use of techniques complementary to X-ray scattering to
determine exact crystal symmetries); it is useful to see these
reverse cases to demonstrate the full complementarity of X-ray
crystallography and dynamic spectroscopic techniques.

3.1.6. Group informatics and tensor calculus

By V. Kopský and P. Boček

We shall briefly describe here the intentions and contents of
the accompanying software package GI?KoBo-1 (Group Infor-
matics, first two letters of authors names, release 1). A more
detailed description is contained in the manual; the user may
consult this file on the screen, but we recommend that it is printed
out and that the printout is followed in order to become familiar
with the theoretical background as well as with more detailed
instructions for the use of the software.

The main purpose of this software is to describe the changes of
tensor properties of crystalline materials during ferroic phase
transitions, including basic information about domain states. The

software provides powerful information in a standardized
manner and it is based on a few advanced methodical points that
are not yet available in textbooks. These points are:

(i) The introduction of typical variables, which was inspired by
the symbolic method of the old invariant theory (Weitzenböck,
1923).

(ii) The method of Clebsch–Gordan products (Kopský,
1976a,b). The name stems from Clebsch–Gordan coefficients,
known in quantum mechanics as coefficients of momentum
addition. In this case, the coefficients are connected with the
orthogonal group Oð3Þ; analogous coefficients were later intro-
duced and calculated for crystal point groups (Koster et al., 1963).
They appear in Clebsch–Gordan products, which represent a
better adaptation of results for our purposes.

(iii) Tables of tensorial covariants (Kopský, 1979a,b). The name
covariant may sound rather unusual now, but it was originally
used by Weyl (1946); it is equivalent to symmetry-adapted bases
(form-invariant bases and other terms are also used). The term
covariant is classical and its semantical use is easier.

(iv) Tables of fine structures of domain states (Kopský, 1982).
These are contained in a booklet which is practically unknown
though, together with tables of tensorial covariants, it contains all
answers concerning changes of tensor properties at ferroic phase
transitions.

Remark. The original term fine domain structure was amended
because it is not quite accurate.

(v) Extended integrity bases (Patera et al., 1978; Kopský, 1979c).
These represent finite sets of polynomial invariants and covar-
iants suitable for the calculation of all types of interactions in
symmetric systems.

(vi) Lattices of subgroups (Ascher, 1968; Kopský, 1982).
Subgroups of a group constitute a partially ordered set of special
properties called a lattice. The unfortunate coincidence of the
term (in English) with crystallographic lattices should be disre-
garded; it is always possible to see from the context what we
mean by this term.

These methods provide good ammunition for all types of
group-theoretical considerations where work with characters is
insufficient and knowledge of the explicit bases of irreducible
representations is necessary. This is exactly the case for the
theory of structural phase transitions, and the consideration of
domain states, pairs of domain states and domain walls or twin
boundaries. The main results of the software are contained in
tables of symmetry descents G + H and/or G + Fi, where G is
the parent point group, H its normal subgroup and Fi is the set of
conjugate subgroups. These tables provide information about
changes of tensors at ferroic phase transitions as well as basic
information about interactions, and they are also supplemented
by tables of equitranslational subgroups of space groups.

To make this exposition quite clear, we begin in the manual
from the beginning with a brief review of elementary group-
theoretical concepts used in the software. Relevant elementary
tables (listed below in Section A) are followed by more advanced
information proceeding towards the central goal of providing
information for all symmetry descents (Section B). To achieve
this goal, it was also necessary to introduce our own standard
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Fig. 3.1.5.25. Raman spectra of YBa2Cu3O7�x below an apparent phase
transition at ca. 235 K (Zhang et al., 1988).

Table 3.1.5.1. Low-temperature ferroelectrics

Formula

Curie
temperature Tc

(K)

Curie
constant C
(K)

Entropy
change �S
(cal mol�1 K�1)

NH4Al(SO4)2�12H2O 71 ? ?
NH4Fe(SO4)2�12H2O 88 400 0.15
(NH4)2Cd(SO4)3 95 ? ?
CdTiO3 55 4:5 � 104 ?
Pb2Nb2O7 15.3 ? ?
LiTlC4H4O6�H2O 10.5 ? ?
K3Li2Nb5O15 7 ? ?
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