International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 3.2, pp. 380-381

Section 3.2.3.1.3. Mappings

V. Janovec,a* Th. Hahnb and H. Klapperc

a Department of Physics, Technical University of Liberec, Hálkova 6, 461 17 Liberec 1, Czech Republic,bInstitut für Kristallographie, Rheinisch–Westfälische Technische Hochschule, D-52056 Aachen, Germany, and cMineralogisch-Petrologisches Institut, Universität Bonn, D-53113 Bonn, Germany
Correspondence e-mail:  janovec@fzu.cz

3.2.3.1.3. Mappings

| top | pdf |

A mapping [\varphi] of a set [{\sf A}] into a set [{\sf B}] is a rule which assigns to each element [{\bf S} \in {\sf A}] a unique element [{\bf M} \in {\sf B}]. This is written symbolically as [\varphi:{\bf S} \,\mapsto\,{ \bf M}] or [{\bf M}= \varphi({\bf S})], and one says that [\bf{S}] is mapped to [\bf{M}] under the mapping [\varphi]. The element [\bf{M}] is called the image of the element S under [\varphi]. The assignment [\varphi:{\bf S} \,\mapsto\, {\bf M}] can be expressed by an ordered pair [({\bf S},{\bf M})], if one ascribes [\bf{S}] to the first member of the pair and the element [\bf{M}] to the second member of the pair [({\bf S},{\bf M})]. Then the mapping [\varphi] of a set [{\sf A}] into a set [{\sf B}], symbolically written as [\varphi:{\sf A} \rightarrow {\sf B}], can be identified with such a subset of ordered pairs of the Cartesian product [{\sf A} \times {\sf B}] in which each element [\bf{S}] of [{\sf A}] occurs exactly once as the first member of the pair [({\bf S},{\bf M})]. If [{\sf A}] is a finite set, then [\varphi] consists of [|{\sf A}|] ordered pairs.

We note that in a mapping [\varphi:{\sf A} \rightarrow {\sf B}] several elements of [{\sf A}] may be mapped to the same element of [{\sf B}]. In such a case, the mapping [\varphi] is called a many-to-one mapping. If the mapping [\varphi:{\sf A} \rightarrow {\sf B}] is such that each element of [{\sf B}] is the image of some element of [{\sf A}], then the mapping [\varphi] is called a mapping of [{\sf A}] onto [{\sf B}]. If [\varphi] is a mapping of [{\sf A}] onto [{\sf B}] and, moreover, each element of [{\sf B}] is the image of exactly one element of [{\sf A}], then the mapping [\varphi] becomes a one-to-one correspondence between [{\sf A}] and [{\sf B}], [\varphi:{\sf A} \leftrightarrow {\sf B}]. In this case, [{\sf A}] and [{\sf B}] are of the same order.

One often encounters a situation in which one assigns to each ordered pair [({\bf S},{\bf M})] an element [\bf{N}], where all three elements [{\bf S}, {\bf M}, {\bf N}] are elements from the same set [{\sf A}], symbolically [\varphi:({\bf S},{\bf M}) \,\mapsto\, {\bf N}]; [{\bf S}, {\bf M}, {\bf N} \in {\sf A}] or [\varphi:{\sf A} \times {\sf A} \rightarrow {\sf A}]. Such a mapping is called a binary operation or a composition law on the set [{\sf A}]. A sum of two numbers [a+b=c] or a product of two numbers [a\cdot b=c], where [a,b,c] belong to the set of all real numbers, are elementary examples of binary operations.








































to end of page
to top of page