
1.11. Tensorial properties of local crystal susceptibilities

By V. E. Dmitrienko, A. Kirfel and E. N. Ovchinnikova

1.11.1. Introduction

The tensorial characteristics of macroscopic physical properties

(as described in Chapters 1.3, 1.4 and 1.6–1.8 of this volume) are

determined by the crystal point group, whereas the symmetry of

local crystal properties, such as atomic displacement parameters

(Chapter 1.9) or electric field gradient tensors (Section 2.2.15) are

regulated by the crystal space group. In the present chapter, we

consider further examples of the impact of symmetry on local

physical properties, particularly both symmetry and physical

phenomena that allow and restrict forbidden reflections excited

at radiation energies close to X-ray absorption edges of atoms,

and reflections caused by magnetic scattering.

We begin with the X-ray dielectric susceptibility, which

expresses the response of crystalline matter to an incident X-ray

wave characterized by its energy (frequency), polarization and

wavevector. The response is a polarization of the medium, finally

resulting in a scattered wave with properties generally different

from the initial ones. Thus, the dielectric susceptibility plays

the role of a scattering amplitude, which relates the scattered

wave to the incident wave. This is the basis of the different

approaches to X-ray diffraction theories presented in Chapters

1.2 and 5.1 of International Tables for Crystallography Volume B

(2008). Here, we consider only elastic scattering, i.e. the energies

of the incident and scattered waves are identical, and the X-ray

susceptibility is assumed to comply with the periodicity of the

crystalline matter.

It is important that the dielectric susceptibility is (i) a local

crystal property and (ii) a tensor physical property, because it

relates the polarization vectors of the incident and scattered

radiation. Consequently, the symmetry of the tensor is deter-

mined by the symmetry of the crystal space group, rather than by

that of the point group as in conventional optics. In the vast

majority of X-ray applications, this tensor can reasonably be

assumed to be given by the product of the unit tensor and a scalar

susceptibility, which is proportional to the electron density plus

exclusively energy-dependent dispersion corrections as consid-

ered in Section 4.2.6 of International Tables for Crystallography

Volume C (2004). As a result of atomic wavefunction distortions

caused by neighbouring atoms, these scalar dispersion correc-

tions can also become anisotropic tensors, namely in the close

vicinity (usually less than about 50 eV) of absorption edges of

elements. For heavy elements, the anisotropy of the tensor

atomic factor can exceed 20 e atom�1. Appropriate references to

detailed descriptions of the phenomenon can be found in

Brouder (1990), Materlik et al. (1994) and in Section 4.2.6 of

Volume C (2004).

However, even if the anisotropy of the atomic factor is small, it

can be crucial for some effects, for instance the excitation of so-

called ‘forbidden’ reflections, which vanish in absence of aniso-

tropy. Indeed, the crystal symmetry imposes strong restrictions

on the indices of possible (‘allowed’) reflections. The systematic

reflection conditions for the different space groups and for

special atomic sites in the unit cell are listed in International

Tables for Crystallography Volume A (Hahn, 2005). The resulting

extinctions are due to (i) the translation symmetry of the non-

primitive Bravais lattices, (ii) the symmetry elements of the space

group (glide planes and/or screw axes) and (iii) special sites. The

first kind cannot be violated. The other extinctions are obtained if

the atomic scattering factor (as the Fourier transform of an

independent atom/ion with spherically symmetric electron-

density distribution) is an element-specific scalar that depends

only on the scattering-vector length and the dispersion correc-

tions. Then the intensities of extinct reflections generally vanish.

These reflections are ‘forbidden’, but for different physical

reasons not all of their intensities are necessarily strictly zero.

Such reflections can appear owing to an asphericity of (i) an

atomic electron-density distribution caused by chemical bonding

and/or (ii) atomic vibrations (Dawson, 1975) if the atom in

question occupies a special site.

In contrast, an anisotropy of the atomic factor affects all

reflections and can therefore violate general extinction rules

related to glide planes and/or screw axes, i.e. symmetry elements

with translation components, in nonsymmorphic space groups.

Even a very small X-ray anisotropy can be quantitatively studied

with this type of forbidden reflections, and yield information

about electronic states of crystals or partial structures of resonant

scatterers. This was first recognized by Templeton & Templeton

(1980), and a detailed theory was developed only a few years

later (Dmitrienko, 1983, 1984). The excitation of forbidden

reflections caused by anisotropic anomalous scattering was first

observed in an NaBrO3 crystal (Templeton & Templeton, 1985,

1986) and then studied for Cu2O (Eichhorn & Kirfel, 1988), TiO2

and MnF2 (Kirfel & Petcov, 1991), and for many other

compounds with different crystal symmetries. Within the dipole

approximation, a systematic compilation of ‘forbidden’ reflection

properties for all relevant space groups up to tetragonal

symmetry and an application to partial-structure analysis

followed (Kirfel et al., 1991; Kirfel & Petcov, 1992; Kirfel &

Morgenroth, 1993; Morgenroth et al., 1994). Today, there are

numerous surveys devoted to this well developed subject, and

further details, applications and references can be found therein

(Belyakov & Dmitrienko, 1989; Carra & Thole, 1994; Hodeau et

al., 2001; Lovesey et al., 2005; Dmitrienko et al., 2005; Altarelli,

2006; Collins et al., 2007; Collins & Bombardi, 2010; Finkelstein &

Dmitrienko, 2012). Forbidden reflections of the last type have

also been observed (well before corresponding X-ray studies) in

diffraction of Mössbauer radiation (Belyakov & Aivazyan, 1969;

Belyakov, 1975; Champeney, 1979) and, at optical wavelengths, in

the blue phases of chiral liquid crystals (Belyakov & Dmitrienko,

1985; Wright & Mermin, 1989; Seideman, 1990; Crooker, 2001).

Similar phenomena have also been reported to exist in chiral

smectic liquid crystals (Gleeson & Hirst, 2006; Barois et al., 2012)

and, considering neutron diffraction, in crystals with local

anisotropy of the magnetic susceptibility (Gukasov & Brown,

2010). All these latter findings are, however, beyond the scope of

this chapter.

X-ray polarization phenomena similar to those in visible optics

and spectroscopy (birefringence, linear and circular dichroism,

the Faraday rotation) have been discussed since the beginning

of the 20th century (Hart & Rodriques, 1981; Templeton &

Templeton, 1980, 1982). Experimental studies and applications
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were mainly prompted by the development of synchrotrons and

storage devices as sources of polarized X-rays (a historical

overview can be found in Rogalev et al., 2006). In particular, for

non-magnetic media, X-ray natural circular dichroism (XNCD) is

used as a method for studying electronic states with mixed parity

(Natoli et al., 1998; Goulon et al., 2003). Various kinds of X-ray

absorption spectroscopies using polarized X-rays have been

developed for magnetic materials; examples are XMCD (X-ray

magnetic circular dichroism) (Schütz et al., 1987; Thole et al.,

1992; Carra et al., 1993) and XMLD (X-ray magnetic linear

dichroism) (Thole et al., 1986; van der Laan et al., 1986; Arenholz

et al., 2006; van der Laan et al., 2008). X-ray magnetochiral

dichroism (XM�D) was discovered by Goulon et al. (2002) and is

used as a probe of toroidal moment in solids. Sum rules

connecting X-ray spectral parameters with the physical proper-

ties of the medium have also been developed (Thole et al., 1992;

Carra et al., 1993; Goulon et al., 2003) for various kinds of X-ray

spectroscopies and are widely used for applications. These types

of X-ray absorption spectroscopies are not considered here, as

this chapter is mainly devoted to X-ray tensorial properties

observed in single-crystal diffraction.

1.11.2. Symmetry restrictions on local tensorial susceptibility and
forbidden reflections

Several different approaches can be used to determine the local

susceptibility with appropriate symmetry. For illustration, we

start with the simple but very important case of a symmetric

tensor of rank 2 defined in the Cartesian system, r ¼ ðx; y; zÞ (in

this case, we do not distinguish covariant and contravariant

components, see Chapter 1.1). From the physical point of view,

such tensors appear in the dipole–dipole approximation (see

Section 1.11.4).

1.11.2.1. General symmetry restrictions

The most general expression for the tensor of susceptibility is

exclusively restricted by the crystal symmetry, i.e. �ijðrÞ must be

invariant against all the symmetry operations g of the given space

group G:

�jkðrÞ ¼ R
g
jmR

gT
nk�mnðr

gÞ; ð1:11:2:1Þ

where R
g
jk is the matrix of the point operation (rotation or mirror

reflection), r
g
j ¼ R

g
kjðrk � a

g
kÞ, and a

g
k is the associated vector of

translation. The index T indicates a transposed matrix, and

summation over repeated indices is implied hereafter. To meet

the above demand, it is obviously sufficient for �ijðrÞ to be

invariant against all generators of the group G.

There is a simple direct method for obtaining �ijðrÞ obeying

equation (1.11.2.1): we can take an arbitrary second-rank tensor

�ijðrÞ and average it over all the symmetry operations g:

�jkðrÞ ¼ N�1
P

g2G

R
g
jmR

gT
nk�mnðr

gÞ; ð1:11:2:2Þ

where N is the number of elements g in the group G. A small

problem is that N is infinite for any space group, but this can be

easily overcome if we take �ijðrÞ as periodic and obeying the

translation symmetry of the given Bravais lattice. Then the

number N of the remaining symmetry operations becomes finite

(an example of this approach is given in Section 1.11.2.3).

1.11.2.2. Tensorial structure factors and forbidden reflections

In spite of its simplicity, equation (1.11.2.1) provides non-trivial

restrictions on the tensorial structure factors of Bragg reflections.

The sets of allowed reflections, listed in International Tables for

Crystallography Volume A (Hahn, 2005) for all space groups and

for all types of atom sites, are based on scalar X-ray susceptibility.

In this case, reflections can be forbidden (i.e. they have zero

intensity) owing to glide-plane and/or screw-axis symmetry

operations. This is because the scalar atomic factors remain

unchanged upon mirror reflection or rotation, so that the

contributions from symmetry-related atoms to the structure

factors can cancel each other. In contrast, atomic tensors are

sensitive to both mirror reflections and rotations, and, in general,

the tensor atomic factors of symmetry-related atoms have

different orientations in space. As a result, forbidden reflections

can in fact be excited just due to the anisotropy of susceptibility,

so that the selection rules for possible reflections change.

It is easy to see how the most general tensor form of the

structure factors can be deduced from equation (1.11.2.1). The

structure factor of a reflection with reciprocal-lattice vector H is

proportional to the Fourier harmonics of the susceptibility. The

corresponding relations (Authier, 2005, 2008) simply have to be

rewritten in tensorial form:

FjkðHÞ ¼ �
�V

r0�
2
�jkðHÞ � �

�V

r0�
2

Z

�jkðrÞ expð�2�iH � rÞ dr;

ð1:11:2:3Þ

where r0 ¼ e2=mc2 is the classical electron radius, � is the X-ray

wavelength and V is the volume of the unit cell.

1.11.2.2.1. Glide-plane forbidden reflections

Considering first the glide-plane forbidden reflections, there

may, for instance, exist a glide plane c perpendicular to the x axis,

i.e. any point x; y; z is transformed by this plane into �x; y; zþ 1
2.

The corresponding matrix of this symmetry operation changes

the sign of x,

Rc
jk ¼ RcT

jk ¼

�1 0 0

0 1 0

0 0 1

0

@

1

A; ð1:11:2:4Þ

and the translation vector into ac ¼ ð0; 0; 1
2Þ. Substituting

(1.11.2.4) into (1.11.2.1) and exchanging the integration variables

in (1.11.2.3), one obtains for the structure factors of reflections

0k‘

Fjkð0k‘Þ ¼ expð�i�‘ÞRc
jmRcT

nkFmnð0k‘Þ: ð1:11:2:5Þ

If Fjkð0k‘Þ is scalar, i.e. Fjkð0k‘Þ ¼ Fð0k‘Þ�jk, then Fð0k‘Þ ¼
�Fð0k‘Þ for odd ‘, hence Fð0k‘Þ vanishes. This is the well known

conventional extinction rule for a c glide plane, see International

Tables for Crystallography Volume A (Hahn, 2005). If, however,

Fjkð0k‘Þ is a tensor, the mirror reflection x!�x changes the

signs of the xy and xz tensor components [as is also obvious from

equation (1.11.2.5)]. As a result, the xy and xz components

should not vanish for ‘ ¼ 2nþ 1 and the tensor structure factor

becomes

Fjkð0k‘; ‘ ¼ 2nþ 1Þ ¼

0 F1 F2

F1 0 0

F2 0 0

0

@

1

A: ð1:11:2:6Þ
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In general, the elements F1 and F2 are complex, and it should be

emphasized from the symmetry point of view that they are

different and arbitrary for different k and ‘. However, from the

physical point of view, they can be readily expressed in terms of

tensor atomic factors, where only those chemical elements are

relevant whose absorption-edge energies are close to the incident

radiation energy (see below).

It is also easy to see that for the non-forbidden (= allowed)

reflections 0k‘; ‘ ¼ 2n, the non-zero tensor elements are just

those which vanish for the forbidden reflections:

Fjkð0k‘; ‘ ¼ 2nÞ ¼

F1 0 0

0 F2 F4

0 F4 F3

0

@

1

A: ð1:11:2:7Þ

Here the result is mainly provided by the diagonal elements

F1 � F2 � F3, but there is still an anisotropic part that contri-

butes to the structure factor, as expressed by the off-diagonal

element. In principle, the effect on the total intensity as well as

the element itself can be assessed by careful measurements using

polarized radiation.

1.11.2.2.2. Screw-axis forbidden reflections

For the screw-axis forbidden reflections, the most general form

of the tensor structure factor can be found as before (Dmitrienko,

1983; see Table 1.11.2.1). Again, as in the case of the glide plane,

for each forbidden reflection all components of the tensor

structure factor are determined by at most two independent

complex elements F1 and F2. There may, however, exist further

restrictions on these tensor elements if other symmetry opera-

tions of the crystal space group are taken into account. For

example, although there are 21 screw axes in space group I213,

F1 ¼ F2 ¼ 0 and reflections 00‘; ‘ ¼ 2nþ 1 remain forbidden

because the lattice is body centred, and this applies not only to

the dipole–dipole approximation considered here, but also within

any other multipole approximation.

In Table 1.11.2.1, resulting from the dipole–dipole approx-

imation, some reflections still remain forbidden. For instance, in

the case of a 63 screw axis, there is no anisotropy of susceptibility

in the xy plane due to the inevitable presence of the threefold

rotation axis. For 61 and 65 axes, the reflections with ‘ ¼ 6nþ 3

also remain forbidden because only dipole–dipole interaction (of

X-rays) is taken into account, whereas it can be shown that, for

example, quadrupole interaction permits the excitation of these

reflections.

1.11.2.3. Local tensorial susceptibility of cubic crystals

Let us consider in more detail the local tensorial properties of

cubic crystals. This case is particularly interesting because for

cubic symmetry the second-rank tensor is isotropic, so that a

global anisotropy is absent (but it exists for tensors of rank 4 and

higher). Local anisotropy is of importance for some physical

parameters, and it can be described by tensors depending peri-

odically on the three space coordinates. This does not only

concern X-ray susceptibility, but can also, for instance, result

from describing orientation distributions in chiral liquid crystals

(Belyakov & Dmitrienko, 1985) or atomic displacements

(Chapter 1.9 of this volume) and electric field gradients (Chapter

2.2 of this volume) in conventional crystals.

The symmetry element common to all cubic space groups is the

threefold axis along the cube diagonal. The matrix R3 of the

symmetry operation is

R3 ¼

0 0 1

1 0 0

0 1 0

0

@

1

A: ð1:11:2:8Þ

This transformation results in the circular permutation x; y; z!

z; x; y, and from equation (1.11.2.1) it is easy to see that invar-

iance of �jkðx; y; zÞ demands the general form

�jkðx; y; zÞ ¼

a1ðx; y; zÞ a2ðz; x; yÞ a2ðy; z; xÞ

a2ðz; x; yÞ a1ðy; z; xÞ a2ðx; y; zÞ

a2ðy; z; xÞ a2ðx; y; zÞ a1ðz; x; yÞ

0

@

1

A; ð1:11:2:9Þ

where a1ðx; y; zÞ and a2ðx; y; zÞ are arbitrary functions with

the periodicity of the corresponding Bravais lattice:

aiðxþ nx; yþ ny; zþ nzÞ ¼ aiðx; y; zÞ for primitive lattices

(nx; ny; nz being arbitrary integers) plus in addition

aiðxþ
1
2 ; yþ 1

2 ; zþ 1
2Þ = aiðx; y; zÞ for body-centered lattices or

aiðxþ
1
2 ; yþ 1

2 ; zÞ = aiðx; yþ 1
2 ; zþ 1

2Þ = aiðxþ
1
2 ; y; zþ 1

2Þ =

aiðx; y; zÞ for face-centered lattices.

Depending on the space group, other symmetry elements can

enforce further restrictions on a1ðx; y; zÞ and a2ðx; y; zÞ:

P23;F23; I23:

a1ðx; y; zÞ ¼ a1ðx; �y; �zÞ ¼ a1ð�x; �y; zÞ ¼ a1ð�x; y; �zÞ;

a2ðx; y; zÞ ¼ a2ðx; �y; �zÞ ¼ �a2ð�x; �y; zÞ ¼ �a2ð�x; y; �zÞ:

ð1:11:2:10Þ

P213; I213:

a1ðx; y; zÞ ¼ a1ð
1
2þ x; 1

2� y; �zÞ

¼ a1ð
1
2� x; �y; 1

2þ zÞ ¼ a1ð�x;
1
2þ y; 1

2� zÞ;

a2ðx; y; zÞ ¼ a2ð
1
2þ x; 1

2� y; �zÞ

¼ �a2ð
1
2� x; �y; 1

2þ zÞ ¼ �a2ð�x;
1
2þ y; 1

2� zÞ:

ð1:11:2:11Þ

Pm�3;Fm�3; Im�3: (1.11.2.10) and

aiðx; y; zÞ ¼ aið�x; �y; �zÞ: ð1:11:2:12Þ
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Table 1.11.2.1. The indices ‘ of the screw-axis/glide-plane forbidden reflections
(n ¼ 0;�1;�2; . . .) and independent components of their tensorial structure

factors FH
jk

Other components: FH
yy ¼ �FH

xx, FH
zz ¼ 0, FH

jk ¼ FH
kj . The direction of the z axis is

selected along the corresponding screw axes. The last column lists different types
of polarization properties defined in Section 1.11.3.

Screw axis
or glide
plane ‘ FH

xx FH
xy FH

xz FH
yz Type

21 2nþ 1 0 0 F1 F2 I
31 3n� 1 F1 �iF1 F2 �iF2 II
32 3n� 1 F1 �iF1 F2 �iF2 II
41 4n� 1 0 0 F1 �iF1 I
41 4nþ 2 F1 F2 0 0 II
42 2nþ 1 F1 F2 0 0 II
43 4n� 1 0 0 F1 �iF1 I
43 4nþ 2 F1 F2 0 0 II
61 6n� 1 0 0 F1 �iF1 I
61 6n� 2 F1 �iF1 0 0 II
61 6nþ 3 0 0 0 0
62 3n� 1 F1 �iF1 0 0 II
63 2nþ 1 0 0 0 0
64 3n� 1 F1 �iF1 0 0 II
65 6n� 1 0 0 F1 �iF1 I
65 6n� 2 F1 �iF1 0 0 II
65 6nþ 3 0 0 0 0
c 2nþ 1 0 F1 F2 0 II
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Pn�3: (1.11.2.10) and

aiðx; y; zÞ ¼ aið
1
2� x; 1

2� y; 1
2� zÞ: ð1:11:2:13Þ

Fd�3: (1.11.2.10) and

aiðx; y; zÞ ¼ aið
1
4� x; 1

4� y; 1
4� zÞ: ð1:11:2:14Þ

Pa�3; Ia�3: (1.11.2.11) and (1.11.2.12).

P432;F432; I432: (1.11.2.10) and

aiðx; y; zÞ ¼ aið�x; �z; �yÞ: ð1:11:2:15Þ

P4232: (1.11.2.10) and

aiðx; y; zÞ ¼ aið
1
2� x; 1

2� z; 1
2� yÞ: ð1:11:2:16Þ

F4132;P4332; I4132: (1.11.2.11) and

aiðx; y; zÞ ¼ aið
1
4� x; 1

4� z; 1
4� yÞ: ð1:11:2:17Þ

P4132: (1.11.2.11) and

aiðx; y; zÞ ¼ aið
3
4� x; 3

4� z; 3
4� yÞ: ð1:11:2:18Þ

P�43m;F �43m; I �43m: (1.11.2.10) and

aiðx; y; zÞ ¼ aiðx; z; yÞ: ð1:11:2:19Þ

P�43n;F �43c: (1.11.2.10) and

aiðx; y; zÞ ¼ aið
1
2þ x; 1

2þ z; 1
2þ yÞ: ð1:11:2:20Þ

I �43d: (1.11.2.11) and

aiðx; y; zÞ ¼ aið
1
4þ x; 1

4þ z; 1
4þ yÞ: ð1:11:2:21Þ

Pm�3m; Fm�3m; Im�3m: (1.11.2.10), (1.11.2.12) and (1.11.2.19).

Pn�3n: (1.11.2.10), (1.11.2.13) and (1.11.2.15).

Pm�3n;Fm�3c: (1.11.2.10), (1.11.2.12) and (1.11.2.20).

Pn�3m: (1.11.2.10), (1.11.2.13) and (1.11.2.19).

Fd�3m: (1.11.2.10), (1.11.2.14) and (1.11.2.19).

Fd�3c: (1.11.2.10), (1.11.2.13) and (1.11.2.20).

Ia�3d: (1.11.2.11), (1.11.2.12) and (1.11.2.21).

For all aiðx; y; zÞ, the sets of coordinates are chosen here as in

International Tables for Crystallography Volume A (Hahn, 2005);

the first one being adopted if Volume A offers two alternative

origins. The expressions (1.11.2.10) or (1.11.2.11) appear for all

space groups because all of them are supergroups of P23 or P213.

The tensor structure factors of forbidden reflections can be

further restricted by the cubic symmetry, see Table 1.11.2.2. For

the glide plane c, the tensor structure factor of 0k‘; ‘ ¼ 2nþ 1

reflections is given by (1.11.2.6), whereas for the diagonal glide

plane n, it is given by

Fjkðhh‘; ‘ ¼ 2nþ 1Þ ¼

F1 0 F2

0 �F1 �F2

F2 �F2 0

0

@

1

A; ð1:11:2:22Þ

and additional restrictions on F1 and F2 can become effective for

k ¼ ‘ or h ¼ ‘. For forbidden reflections of the 00‘ type, the

tensor structure factor is either

Fjkð00‘Þ ¼
0 0 F1

0 0 F2

F1 F2 0

0

@

1

A ð1:11:2:23Þ

or

Fjkð00‘Þ ¼
F1 F2 0

F2 �F1 0

0 0 0

0

@

1

A; ð1:11:2:24Þ

see Table 1.11.2.2.

1.11.3. Polarization properties and azimuthal dependence

There are two important properties that distinguish forbidden

reflections from conventional (‘allowed’) ones: non-trivial

polarization effects and strong azimuthal dependence of intensity

(and sometimes also of polarization) corresponding to the

symmetry of the direction of the scattering vector. The azimuthal

dependence means that the intensity and polarization properties

of the reflection can change when the crystal is rotated around

the direction of the reciprocal-lattice vector, i.e. they change with

the azimuthal angle of the incident wavevector k defined relative

to the scattering vector. The polarization and azimuthal proper-

ties, both mainly determined by symmetry, are two of the most

informative characteristics of forbidden reflections. A third

one, energy dependence, is determined by physical interactions,

electronic and/or magnetic, where the role of symmetry is indirect

but nevertheless also important (e.g. in splitting of atomic levels

etc., see Section 1.11.4).

In the kinematical theory, usually used for weak reflections,

one obtains for unpolarized incident radiation the intensity of a

conventional reflection as given by

IH ¼ AHjFðHÞj
2 1þ cos2 2�
� �

=2; ð1:11:3:1Þ

where � is the Bragg angle, FðHÞ is the scalar structure factor of

reflection H, and AH is a scale factor, which depends on the

incident beam intensity, the sample volume, the geometry of

diffraction etc. (see International Tables for Crystallography

Volume B), and can be set to AH ¼ 1 hereafter.
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Table 1.11.2.2. The indices of the forbidden reflections and corresponding
tensors of structure factors Fjkðhk‘Þ for the cubic space groups

(n ¼ 0;�1;�2; . . .)

Space
group

Indices of
reflections

Expressions for Fjkðhk‘Þ and
additional restrictions

P213 00‘: ‘ ¼ 2nþ 1 (1.11.2.23)
Pn�3 0k‘: ‘ ¼ 2nþ 1 (1.11.2.6); F2 ¼ 0 for 00‘
Fd�3 0k‘: k; ‘ ¼ 2n; kþ ‘ ¼ 4nþ 2 (1.11.2.6); F2 ¼ 0 for 00‘
Pa�3 0k‘: k ¼ 2nþ 1 (1.11.2.6); F2 ¼ 0 for 0k0
Ia�3 0k‘: k; ‘ ¼ 2nþ 1 (1.11.2.6)
P4232 00‘: ‘ ¼ 2nþ 1 (1.11.2.24)
F4132 00‘: ‘ ¼ 4nþ 2 (1.11.2.24)
P4332 00‘: ‘ ¼ 4n� 1 (1.11.2.23); F2 ¼ �iF1

00‘: ‘ ¼ 4nþ 2 (1.11.2.24)
P1332 00‘: ‘ ¼ 4n� 1 (1.11.2.23); F2 ¼ �iF1

00‘: ‘ ¼ 4nþ 2 (1.11.2.24)
I4132 00‘: ‘ ¼ 4nþ 2 (1.11.2.24)
P�43n hh‘: ‘ ¼ 2nþ 1 (1.11.2.22); F2 ¼ 0 for 00‘,

F1 ¼ F2 ¼ 0 for hhh
F �43c hh‘: h; ‘ ¼ 2nþ 1 (1.11.2.22); F1 ¼ F2 ¼ 0 for hhh
I �43d hh‘: 2hþ ‘ ¼ 4nþ 2 (1.11.2.22); F2 ¼ 0 for 00‘,

F1 ¼ F2 ¼ 0 for hhh
Pn�3n hh‘: ‘ ¼ 2nþ 1 (1.11.2.22); F1 ¼ F2 ¼ 0 for hhh

0k‘: kþ ‘ ¼ 2nþ 1 (1.11.2.6); F1 ¼ F2 ¼ 0 for 00‘
Pm�3n hh‘: ‘ ¼ 2nþ 1 (1.11.2.22); F1 ¼ F2 ¼ 0 for hhh
Pn�3m 0k‘: kþ ‘ ¼ 2nþ 1 (1.11.2.6); F2 ¼ 0 for 00‘
Fm�3c hh‘: h; ‘ ¼ 2nþ 1 (1.11.2.22); F1 ¼ F2 ¼ 0 for hhh
Fd�3m 0k‘: k; ‘ ¼ 2n; kþ ‘ ¼ 4nþ 2 (1.11.2.6); F2 ¼ 0 for 00‘
Fd�3c 0k‘: k; ‘ ¼ 2n; kþ ‘ ¼ 4nþ 2 (1.11.2.6); F2 ¼ 0 for 00‘

hh‘: h; ‘ ¼ 2nþ 1 (1.11.2.22); F1 ¼ F2 ¼ 0 for hhh
Ia�3d 0k‘: k; ‘ ¼ 2nþ 1 (1.11.2.6); F2 ¼ �F1 for 0kk

hh‘: 4hþ ‘ ¼ 4nþ 2 (1.11.2.22); hhh: F1 ¼ F2 ¼ 0,
F2 ¼ 0 for 00‘
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If the structure factor is a tensor of rank 2, then the reflection

intensity obtained with incident and reflected radiation with

polarization vectors, respectively, e and e0 (prepared and

analysed by a corresponding polarizer and analyser) is given by

IHðe
0; eÞ ¼ jFjkðHÞe

0�
j ekj

2; ð1:11:3:2Þ

where the star denotes the complex conjugate. The maximum of

this expression is reached when e0 is equal to the polarization of

the diffracted beam. In general, the polarization of the diffracted

secondary radiation, e0H, depends on the incident beam polar-

ization e:

e0H ¼ CH=

ffiffiffiffiffiffiffiffiffiffiffi

jCHj
2

q

; ð1:11:3:3Þ

where

ðCHÞj ¼ k2FjkðHÞ � k0jk
0
nFnkðHÞ

� �
ek ð1:11:3:4Þ

(the second term in this expression provides orthogonality

between the polarization vector and the corresponding wave-

vector). If the polarization of the diffracted beam is not analysed,

the total intensity of the diffracted beam Itot
H ðeÞ is equal to

IHðe
0
H; eÞ. If the tensor structure factor is a direct product of two

vectors, then the polarization of the diffracted beam does not

depend on the incident polarization.

The polarization analysis of forbidden reflections frequently

uses the linear polarization vectors r and p. Vector r is

perpendicular to the scattering plane, whereas the vectors p and

p
0 are in the scattering plane so that r; p; k and r; p0; k0 form

right-hand triads. Note that the components of the polarization

vectors, r ¼ ð�x; �y; �zÞ etc., change with the azimuthal angle if

the crystal is rotated about the scattering vector.

In special cases, circular polarizations are very useful and

sometimes even indispensable, because they enable us to distin-

guish right- and left-hand crystals or to unravel interferences

between magnetic and electric scattering (see below).

If the incident radiation is r- or p-polarized or non-polarized,

then the total reflection intensities for these three cases are given

by the following expressions:

I
r
¼ IHðr; rÞ þ IHðp

0; rÞ; ð1:11:3:5Þ

I
p
¼ IHðr; pÞ þ IHðp

0; pÞ; ð1:11:3:6Þ

IH ¼ ðIr þ I
p
Þ=2: ð1:11:3:7Þ

A more general approach uses the Stokes parameters for the

description of partially polarized X-rays and the Müller matrices

for the scattering process (see a survey by Detlefs et al., 2012).

This issue will, however, not be discussed further since there is no

principal difference to conventional optics.

Let us consider the polarization and azimuthal characteristics

of screw-axis forbidden reflections listed in Table 1.11.2.1. These

characteristics are rather different for two types of reflections:

type I reflections are those for which Fxx ¼ Fyy ¼ Fxy ¼ 0, while

all other reflections constitute the rest, type II.

The type-I forbidden reflections have the simplest polarization

properties. From equations (1.11.3.5)–(1.11.3.7) and Table

1.11.2.1, one obtains IHðr; rÞ ¼ IHðp
0; pÞ ¼ 0 and IH ¼ I

r
¼

I
p
¼ IHðr; pÞ ¼ IHðp

0; rÞ, where IHðp
0; rÞ is given by

IHðp
0; rÞ ¼ ½jF1j

2 sin2 ’þ jF2j
2 cos2 ’; ð1:11:3:8Þ

� ReðF1F�2 Þ sin 2’� cos2 � ð1:11:3:9Þ

for a 21 screw axis and

IHðp
0; rÞ ¼ jF1j

2 cos2 � ð1:11:3:10Þ

for 41, 43, 61 and 65 screw axes, where ’ is the azimuthal angle of

crystal rotation about the scattering vector H. Thus, r-polarized

incident radiation results in reflected radiation with p polariza-

tion and vice versa; and unpolarized incident radiation gives

unpolarized reflected radiation.

Note that there is no azimuthal dependence of intensity in

(1.11.3.10). Nevertheless, the phase of the diffracted beams

changes with azimuthal rotation, as might be observed via

interference with another scattering process, for example, with

multiple (Renninger) diffraction. Such measurements could also

be useful for determining the phases of the complex F1 and F2

above.

The polarization properties of type-II reflections are quite

distinct from those of type-I reflections. The intensities belonging

to various polarization channels, i.e. combinations of primary

and secondary beam polarizations (r! r, r! p
0 etc.), exhibit

different azimuthal symmetries for different screw axes.

For 31 and 32 screw axes, the azimuthal symmetry is threefold:

I
r
¼ jF1j

2
ð1þ sin2 �Þ þ jF2j

2 cos2 � þDð’Þ;

I
p
¼ jF1j

2 sin2 �ð1þ sin2 �Þ þ jF2j
2 cos2 � þDð’Þ;

IH ¼ jF1j
2
ð1þ sin2 �Þ2=2þ jF2j

2 cos2 � þDð’Þ;

ð1:11:3:11Þ

where Dð’Þ ¼ sin 2� ½ReðF1F�2 Þ cos 3’� ImðF1F�2 Þ sin 3’�. The �

sign corresponds to Fxy ¼ �iFxx in Table 1.11.2.1.

For 41, 43, and 42 screw axes, the symmetry is fourfold:

I
r
¼ jF1j

2Bð’Þ þ jF2j
2Cð’Þ

þ ReðF1F�2 Þ cos2 � sin 4’;

I
p
¼ sin2 �

�
jF1j

2Cð’Þ þ jF2j
2Bð’Þ

þ ReðF1F�2 Þ cos2 � sin 4’
�
;

IH ¼ ðIr þ I
p
Þ=2; ð1:11:3:12Þ

where Bð’Þ ¼ 1� cos2 � sin2 2’ and Cð’Þ ¼ 1� cos2 � cos2 2’.

No azimuthal dependence exists for the screw axes 61, 62, 64

and 65:

I
r
¼ jF1j

2
ð1þ sin2 �Þ;

I
p
¼ jF1j

2
ð1þ sin2 �Þ sin2 �;

IH ¼ jF1j
2
ð1þ sin2 �Þ2=2: ð1:11:3:13Þ

Unlike the type-I reflections, the intensities of the type-II

reflections are different for r- and p-polarized incident beams.

What is more interesting is that type-II reflections are ‘chiral’, i.e.

their intensities differ for right-hand and left-hand circularly

polarized incident radiation. As an example, we take the type-II

back-reflections (� ¼ �=2) for three- and sixfold screw axes. We

find from Table 1.11.2.1 and equations (1.11.3.1) and (1.11.3.3)

that only the beams with definite circular polarization (right-hand

if Fxy ¼ iFxy and left-hand if Fxy ¼ �iFxy) are reflected and that

the back-reflected radiation has the same circular polarization in

both cases. For opposite polarization, the reflection is absent.

Thus, under these circumstances, the crystal may be regarded as a

circular polarizer or analyser. If � <�=2, the eigen-polarizations

are elliptic and the axial ratio of the polarization ellipse is

equal to sin � for the sixfold screw axes (whereas for the three-

and fourfold screw axes, this ratio depends on the parameters F1

and F2).
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The chirality of type-II reflections can be used to distinguish

enantiomorphous crystals. Although this was suggested many

years ago, its potential was only recently proved by experiments,

first on �-quartz, SiO2, and berlinite, AlPO4 (Tanaka et al., 2008;

Tanaka, Kojima et al., 2010), later for tellurium (Tanaka, Collins

et al., 2010). All three candidates crystallize in the space groups

P3121 or P3221. The case of tellurium is particularly interesting

because standard X-ray diffraction methods for absolute struc-

ture determination fail in elemental crystals.

The non-trivial polarization and azimuthal properties

discussed above are, in most cases, determined by symmetry, and

they are used as evidence confirming the origin of the forbidden

reflections. They are also used for obtaining detailed information

about anisotropy of local susceptibility and, hence, about struc-

tural and electronic properties. For instance, careful analysis of

polarization and azimuthal dependences allows one to distinguish

between different scenarios of the Verwey phase transition in

magnetite, Fe3O4 – a longstanding and confusing problem (see

Hagiwara et al., 1999; Garcı́a et al., 2000; Renevier et al., 2001;

Garcı́a & Subı́as, 2004; Nazarenko et al., 2006; Subı́as et al.,

2012).

1.11.4. Physical mechanisms for the anisotropy of atomic X-ray
susceptibility

Conventional non-resonant Thomson scattering in condensed

matter is the result of the interaction of the electric field of the

electromagnetic wave with the charged electron subsystem.

However, there are also other mechanisms of interaction, e.g.

interaction of electromagnetic waves with spin and orbital

moments, which was first considered by Platzman & Tzoar (1970)

for molecules and solids. They predicted the sensitivity of X-ray

diffraction to a magnetic structure of a crystal, as later observed

in the pioneering works of de Bergevin & Brunel (de Bergevin &

Brunel, 1972, 1981; Brunel & de Bergevin, 1981). It is reasonable

to describe all X-ray–electron interactions by the Pauli equation

(Berestetskii et al., 1982), which is a low-energy approximation

to the Dirac equation (typical X-ray energies are h- !	 mc2

� 0:5 MeV where m is the electron mass). The equation accounts

for charge and spin interaction with the electromagnetic field of

the wave, and spin–orbit interaction (Blume, 1985, 1994) using

the following Hamiltonian:

H0 ¼
e2

2mc2

X

p

A2ðrpÞ �
e

mc

X

p

Pp �AðrpÞ

�
eh-

mc

X

p

sp � ½r 
AðrpÞ�

�
e2h-

2ðmc2Þ
2

X

p

sp � ½
_AðrpÞ 
AðrpÞ�; ð1:11:4:1Þ

where Pp is the momentum of the pth electron, and AðrpÞ is the

vector potential of the electromagnetic wave with wavevector k

and polarization e.

Here and below A¼
P

k;�ð2�h- c2=V!kÞ
1=2
½eðk�Þcðk�Þ expðik�rÞ

+ e�ðk�Þcþðk�Þ expð�ik � rÞ�, where V is a quantization volume,

index � labels two polarizations of each wave, eðk�Þ are the

polarizations vectors, and cðk�Þ and cþðk�Þ are the photon

annihilation and creation operators.

Considering X-ray scattering by different atoms in solids as

independent processes [in Section 1.2.4 of International Tables

for Crystallography Volume B, this is called ‘the isolated-atom

approximation in X-ray diffraction’; the validity of this approx-

imation has been discussed by Kolpakov et al. (1978)], the atomic

scattering amplitude f , which describes the scattering of a wave

with wavevector k and polarization e into a wave with wavevector

k0 and polarization e0, can be written as

f ðk; e; k0; e0Þ ¼ �
e2

mc2
fjkðk

0; kÞe0�j ek; ð1:11:4:2Þ

where the tensor atomic factor fjkðk
0; kÞ depends not only on the

wavevectors but also on the atomic environment, magnetic and

orbital moments etc. From equation (1.11.4.1) and with the help

of perturbation theory (Berestetskii et al., 1982), the atomic

factor fjkðk
0; kÞ can be expressed as

fjkðk
0; kÞ

¼
X

a

pa

(
�
a
�
�
X

p

expðiG � rpÞ
�
�a
�
�jk

� i
h- !

mc2

�
a
�
�
X

p

expðiG � rpÞ �i
½G
 Pp�l

h- H2
Ajkl þ s

p
l Bjkl

	 

�
�a
�

�
1

m

X

c

Ea � Ec

h- !

	 

hajOþj ðk

0ÞjcihcjOkðkÞjai

Ea � Ec þ h- !� i �2

þ
1

m

X

c

Ea � Ec

h- !

	 

hajOkðkÞjcihcjO

þ
j ðk
0Þjai

Ea � Ec � h- !

)

;

ð1:11:4:3Þ

where the first line describes the non-resonant Thomson scat-

tering and � is the energy width of the excited state jci. The

second line gives non-resonant magnetic scattering with the spin

and orbital terms given by the rank-3 tensors Bjkl (1.11.5.2) and

Ajkl (1.11.5.1), respectively. Compared to the second-to-last line,

where the energy denominator can be close to zero, the last line is

usually neglected, but sometimes it has to be added to the non-

resonant terms, in particular at photon energies far from reso-

nance. The third term gives the dispersion corrections also

addressed as resonant scattering, magnetic and non-magnetic. In

equation (1.11.4.3), Ea and Ec are the ground and excited states

energies, respectively; pa is the probability that the incident state

of the scatterer jai is occupied; and G ¼ k� k0 is the scattering

vector (in the case of diffraction jGj ¼ 4� sin �=�, where � is the

Bragg angle). The vector operator OðkÞ has the form

OðkÞ ¼
P

p

expðik � rpÞðPp � ih- ½k
 sp�Þ: ð1:11:4:4Þ

The second term in this equation is small and is frequently

omitted.

In general, the total atomic scattering factor looks like

fjkðk
0; k;EÞ ¼ ½f0ðjk

0 � kjÞ þ f 00ðEÞ þ if 000 ðEÞ��ij

þ f 0jkðk
0; k;EÞ þ if 00jkðk

0; k;EÞ þ f
mag
jk ;

ð1:11:4:5Þ

where f0 is the ordinary Thomson (non-resonant) factor, f 00ðEÞ

and f 000 ðEÞ are the isotropic corrections to the dispersion and

absorption, which become stronger near absorption edges

(� 10�1f0), and f 0ijðk
0; k;EÞ and f 00ij ðk

0; k;EÞ are the real and

imaginary contributions accounting for resonant anisotropic

scattering and are sensitive to the local symmetry of the resonant

atom and its magnetism. In the latter case, one should add the

tensor f
mag
ij (� 10�2–10�3f0) describing magnetic non-resonant

scattering, which is also anisotropic (see the next section).

274



1.11. TENSORIAL PROPERTIES OF LOCAL CRYSTAL SUSCEPTIBILITIES

1.11.5. Non-resonant magnetic scattering

Far from resonance (h- !� Ec � Ea), the non-resonant parts of

the scattering factor, f0 and f
mag
ij , described by the first two terms

in (1.11.4.3) are the most important. In the classical approxima-

tion (Brunel & de Bergevin, 1981), there are four physical

mechanisms (electric or magnetic, dipolar or quadrupolar)

describing the interaction of an electron and its magnetic moment

with an electromagnetic wave, causing the re-emission of radia-

tion. The non-resonant magnetic term f magn is small compared to

the charge (Thomson) scattering owing (a) to small numbers of

unpaired (magnetic) electrons and (b) to the factor h- !=mc2 of

about 0.02 for a typical X-ray energy h- ! ¼ 10 keV. This is the

reason why it is so difficult to observe non-resonant magnetic

scattering with conventional X-ray sources (de Bergevin &

Brunel, 1972, 1981; Brunel & de Bergevin, 1981), in contrast to

the nowadays normal use of synchrotron radiation.

Non-resonant magnetic scattering yields polarization proper-

ties quite different from those obtained from charge scattering.

Moreover, it can be divided into two parts, which are associated

with the spin and orbital moments. In contrast to the case of

neutron magnetic scattering, the polarization properties of these

two parts are different, as described by the tensors (Blume, 1994)

Aijk ¼ �2ð1� k � k0=k2Þ�ijk; ð1:11:5:1Þ

Bijk ¼ �ijk �
�
�ilkk0lk

0
j � �jlkklki þ

1
2 �ijlðk

0
lkk þ klk

0
kÞ

� 1
2 ½k
 k0�i�jk �

1
2 ½k
 k0�j�ik

�
=k2; ð1:11:5:2Þ

where �ijk is a completely antisymmetric unit tensor (the Levi-

Civita symbol).

Being convoluted with polarization vectors (Blume, 1985;

Lovesey & Collins, 1996; Paolasini, 2012), the non-resonant

magnetic term can be rewritten as

f magn
nonresðGÞ

¼ �i
h- !

mc2

�
a
�
�P

p

ðA � ½G
 Pp�=h- k2 þ B � spÞ expðiG � rpÞ
�
�a
�
;

ð1:11:5:3Þ

with vectors A and B given by

A ¼ ½e0� 
 e�; ð1:11:5:4Þ

B ¼ ½e0� 
 e� � f½k
 e�ðk � e0�Þ � ½k0 
 e0��ðk0 � eÞ

þ ½k0 
 e0�� 
 ½k
 e�g=k2: ð1:11:5:5Þ

According to (1.11.5.4) and (1.11.5.5), the polarization depen-

dences of the spin and orbit contributions to the atomic scattering

factor are significantly different. Consequently, the two contri-

butions can be separated by analysing the polarization of the

scattered radiation with the help of an analyser crystal (Gibbs et

al., 1988). Usually the incident (synchrotron) radiation is

�-polarized, i.e. the polarization vector is perpendicular to the

scattering plane. If due to the orientation of the analysing crystal

only the �-polarized part of the scattered radiation is recorded,

we can see from (1.11.5.4) that the orbital contribution to the

scattering atomic factor vanishes, whereas it differs from zero

considering the �! � scattering channel.

1.11.6. Resonant atomic factors: multipole expansion

Strong enhancement of resonant scattering occurs when the

energy of the incident radiation gets close to the energy of an

electron transition from an inner shell to an empty state (be it

localized or not) above the Fermi level. There are two widely

used approaches for calculating resonant atomic amplitudes. One

uses Cartesian, the other spherical (polar) coordinates, and both

have their own advantages and disadvantages. Supposing in

(1.11.4.3)

expðik � rpÞ � 1þ ik � rp þ
1
2 ðik � rpÞ

2
þ . . . ð1:11:6:1Þ

and using the expression for the velocity matrix element 	ac

(Berestetskii et al., 1982) 	ac ¼ i!acrac, it is possible to present the

resonant part of the atomic factor (1.11.4.3) as

f res
jk ¼

X

c

pa

m!3
ca

!

�
hajRjjcihcjRkjai

Ea � Ec þ h- !� i�=2

þ
i

2

hajRjjcihcjRkRlkljai

Ea � Ec þ h- !� i�=2
�
hajRjRlk

0
ljcihcjRkjai

Ea � Ec þ h- !� i�=2

� 


þ
1

4

hajRjRlk
0
ljcihcjRkRmkmjai

Ea � Ec þ h- !� i�=2

�

ð1:11:6:2Þ

¼ Djk þ
i

2
Ijklkl �

i

2
Ikjlk

0
l þ

1

4
Qjlkmkmk0l; ð1:11:6:3Þ

where h- !ca ¼ Ec � Ea, Djk is a dimensionless tensor corre-

sponding to the dipole–dipole ðE1E1Þ contribution, Ijkl is the

dipole–quadrupole ðE1E2Þ contribution and Qjklm is the quad-

rupole–quadrupole ðE2E2Þ term. All the tensors are complex and

depend on the energy and the local properties of the medium.

The expansion (1.11.6.1) over the wavevectors is possible near

X-ray absorption edges because the products k � rp are small for

the typical sizes of the inner shells involved. In resonant X-ray

absorption and scattering, the contribution of the magnetic

multipole ML transitions is usually much less than that of the

electric multipole EL transitions. Nevertheless, the scattering

amplitude corresponding to E1M1 events has also been consid-

ered (Collins et al., 2007). The tensors Ijkl and Qjklm describe the

spatial dispersion effects similar to those in visible optics.

1.11.6.1. Tensor atomic factors: internal symmetry

Different types of tensors transform under the action of the

extended orthogonal group (Sirotin & Shaskolskaya, 1982) as

Ai0
1
...i0n
¼ 
ri0

1
k1
. . . ri0nkn

Ak1...kn
; ð1:11:6:4Þ

where the coefficients 
 ¼ �1 depend on the kind of tensor (see

Table 1.11.6.1) and ri0
1
k1

are coefficients describing proper rota-

tions.

Various parts of the resonant scattering factor (1.11.6.3)

possess different kinds of symmetry with respect to: (1) space

inversion �1 or parity, (2) rotations R and (3) time reversal 10. Both

dipole–dipole and quadrupole–quadrupole terms are parity-

even, whereas the dipole–quadrupole term is parity-odd. Thus,
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Table 1.11.6.1. Coefficients 
 corresponding to various kinds of tensor
symmetry with respect to space inversion �1, rotations R, and time reversal 10

Tensor type Example

Transformation type

R �1R 10R �10R

Even Strain 1 1 1 1
Electric Electric field 1 �1 1 �1
Magnetic Magnetic field 1 1 �1 �1
Magnetoelectric Toroidal moment 1 �1 �1 1
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dipole–quadrupole events can exist only for atoms at positions

without inversion symmetry.

It is convenient to separate the time-reversible and time-non-

reversible terms in the contributions to the atomic tensor factor

(1.11.6.3). The dipole–dipole contribution to the resonant atomic

factor can be represented as a sum of an isotropic, a symmetric

and an antisymmetric part, written as (Blume, 1994)

Djk ¼ Dres
0 �jk þDþjk þD�jk; ð1:11:6:5Þ

where Dres
0 ¼ ð1=3ÞðTrDÞ,

Dþjk ¼
1

2
ðDjk þDkjÞ �

1

3
ðTrDÞ�jk

¼
1

4

X

a;c

m!3
ca

h- !
ðp0a þ p0�aÞðhajRjjcihcjRkjai þ hajRkjcihcjRjjai

ð1:11:6:6Þ

and

D�jk ¼
1

2
ðD�jk �D�kjÞ

¼
1

4

X

a;c

m!3
ca

h- !
ðp0a � p0�aÞðhajRjjcihcjRkjai � hajRkjcihcjRjjai;

ð1:11:6:7Þ

p0a ¼ pa=½!� !ca � i�=ð2h- Þ� and p0�a ¼ p�a=½!� !c�a � i�=ð2h- Þ�; p�a

means the probability of the time-reversed state j�ai. If, for

example, jai has a magnetic quantum number m, then j�ai has a

magnetic quantum number �m.

In non-magnetic crystals, the probability of states with �m is

the same, so that p�a ¼ pa and h�ajRs
j j�ci ¼ hcjR

s
kjai; in this case Djk

is symmetric under permutation of the the indices.

Similarly, the dipole–quadrupole atomic factor can be repre-

sented as (Blume, 1994)

f
dq
jk ¼

i

2

X

ac

pa

m!3
ca

h- !

 fhajRjjcihcjRkRljaikl

� hajRjRljcihcjRkjaik
0
lg ð1:11:6:8Þ

¼
i

8

X

ac

m!3
ca

h- !
fIþþjkl ðkl � k0lÞ þ I��jkl ðkl � k0lÞ

þ I�þjkl ðkl þ k0lÞ þ Iþ�jkl ðkl þ k0lÞg; ð1:11:6:9Þ

where

I
�	
jkl ¼

P

ac

ðp0a þ �p0�aÞfhajRjjcihcjRkRljaikl

þ 	hajRjRljcihcjRkjaik
0
lg ð1:11:6:10Þ

with �; 	 ¼ �1. In (1.11.6.10) the first plus (� ¼ 1) corresponds

to the non-magnetic case (time reversal) and the minus (� ¼ �1)

corresponds to the time-non-reversal magnetic term, while the

second � corresponds to the symmetric and antisymmetric parts

of the atomic factor. We see that I��jkl ðkl � k0lÞ can contribute only

to scattering, while I�þjkl ðkl þ k0lÞ can contribute to both resonant

scattering and resonant X-ray propagation. The latter term is a

source of the so-called magnetochiral dichroism, first observed in

Cr2O3 (Goulon et al., 2002, 2003), and it can be associated with a

toroidal moment in a medium possessing magnetoelectric prop-

erties. The symmetry properties of magnetoelectic tensors are

described well by Sirotin & Shaskolskaya (1982), Nye (1985) and

Cracknell (1975). Which magnetoelectric properties can be

studied using X-ray scattering are widely discussed by Marri &

Carra (2004), Matsubara et al. (2005), Arima et al. (2005) and

Lovesey et al. (2007).

It follows from (1.11.6.8) and (1.11.6.10) that Ijkl ¼ Ijlk and the

dipole–quadrupole term can be represented as a sum of the

symmetric Iþjkl ¼ Iþkjl and antisymmetric I�jkl ¼ �I�kjl parts. From

the physical point of view, it is useful to separate the dipole–

quadrupole term into Iþjkl and I�jkl, because only I�jkl works in

conventional optics where k0 ¼ k. The dipole–quadrupole terms

are due to the hybridization of excited electronic states with

different spacial parities, i.e. only for atomic sites without an

inversion centre.

The pure quadrupole–quadrupole term in the tensor atomic

factor is equal to

f
qq
jk ¼

1
4Qjlkmk0lkm ð1:11:6:11Þ

with the fourth-rank tensor Qjklm given by

Qjlkm ¼
X

ac

pa

m!3
ca

h- !

hajRjRljcihcjRkRmjai

!� !ca � ið�=2h- Þ
: ð1:11:6:12Þ

This fourth-rank tensor Qijkm has the following symmetries:

Qjlkm ¼ Qljkm ¼ Qjlmk: ð1:11:6:13Þ

We can define

Qjlkm ¼ Qþjlkm þQ�jlkm ð1:11:6:14Þ

with Q�jlkm ¼ �Qkmjl , where

Q�jlkm ¼
1
4

P

a

ðp0a � p0�aÞðhajRjRljcihcjRkRmjai

� hajRkRmjcihcjRjRljaiÞ: ð1:11:6:15Þ

We see that Q�jlkm vanishes in time-reversal invariant systems,

which is true for non-magnetic structures.

1.11.6.2. Tensor atomic factors (non-magnetic case)

In time-reversal invariant systems, equation (1.11.6.3) can be

rewritten as

f res
jk ¼ Dþjk þ iIþjklðk

0
l � klÞ þ iI�jklðk

0
l þ klÞ þQþjlkmk0lkm þ . . . ;

ð1:11:6:16Þ

where Dþjk corresponds to the symmetric part of the dipole–dipole

contribution, Iþjkl and I�jkl mean the symmetric and antisymmetric

parts of the third-rank tensor describing the dipole–quadrupole

term, and Qþjlkm denotes a symmetric quadrupole–quadrupole

contribution. From the physical point of view, it is useful to

separate the dipole–quadrupole term into Iþjkl and I�jkl, because in

conventional optics, where k0 ¼ k, only I�jkl is relevant.

The tensors contributing to the atomic factor in (1.11.6.16),

Djk, Iþjkl, I�jkl, Qjlkm, are of different ranks and must obey the site

symmetry of the atomic position. Generally, the tensors can be

different, even for crystallographically equivalent positions, but

all tensors of the same rank can be related to one of them,

because all are connected through the symmetry operations of

the crystal space group. In contrast, the scattering amplitude

tensor f res
jm does not necessarily comply with the point symmetry

of the atomic position, because this symmetry is usually violated

considering the arbitrary directions of the radiation wavevectors

k and k0.

Equation (1.11.6.16) is also frequently considered as a

phenomenological expression of the tensor atomic factor where
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each tensor possesses internal symmetry (with respect to index

permutations) and external symmetry (with respect to the atomic

environment of the resonant atom). For instance, the tensor Djk is

symmetric, the rank-3 tensor has a symmetric and a antisym-

metric part, and the rank-4 tensor is symmetric with respect to the

permutation of each pair of indices. The external symmetry of Djk

coincides with the symmetry of the dielectric susceptibility tensor

(Chapter 1.6). Correspondingly, the third-rank tensors I�jkl and Iþjkl

are similar to the gyration susceptibility and electro-optic tensors

(Chapter 1.6), and Qjlkm has the same tensor form as that for

elastic constants (Chapter 1.3). The symmetry restrictions on

these tensors (determining the number of independent elements

and relationships between tensor elements) are very important

and widely used in practical work on resonant X-ray scattering.

Since they can be found in Chapters 1.3 and 1.6 or in textbooks

(Sirotin & Shaskolskaya, 1982; Nye, 1985), we do not discuss all

possible symmetry cases in the following, but consider in the next

section one specific example for X-ray scattering when the

symmetries of the tensors given by expression (1.11.6.3) do not

coincide with the most general external symmetry that is dictated

by the atomic environment.

1.11.6.3. Hidden internal symmetry of the dipole–quadrupole
tensors in resonant atomic factors

It is fairly obvious from expressions (1.11.6.3) and (1.11.6.16)

that in the non-magnetic case the symmetric and antisymmetric

third-rank tensors, Iþjkl and I�jlk, which describe the dipole–quad-

rupole contribution to the X-ray scattering factor, are not inde-

pendent: the antisymmetric part, which is also responsible for

optical-activity effects, can be expressed via the symmetric part

(but not vice versa). Indeed, both of them can be described by a

symmetric third-rank tensor tijk ¼ tikj resulting from the second-

order Born approximation (1.11.6.3),

Iþijk ¼ ðtijk þ tjikÞ=2; ð1:11:6:17Þ

I�ijk ¼ ðtijk � tjikÞ=2; ð1:11:6:18Þ

where

tijk ¼ �
1
2Iijk: ð1:11:6:19Þ

From equation (1.11.6.17), one can infer that the symmetry

restrictions for Iþijk and tijk are the same. Then it can be seen that

I�ijk can be expressed via Iþijk.

For any symmetry, Iþijk and tijk have the same number of inde-

pendent elements (with a maximum 18 for site symmetry 1).

Thus, one can reverse equation (1.11.6.17) and express tijk directly

in terms of Iþijk:

t111 ¼ Iþ111; t211 ¼ 2Iþ121 � Iþ112; t311 ¼ 2Iþ311 � Iþ113;

t122 ¼ 2Iþ122 � Iþ221; t222 ¼ Iþ222; t322 ¼ 2Iþ232 � Iþ223;

t133 ¼ 2Iþ313 � Iþ331; t233 ¼ 2Iþ233 � Iþ332; t333 ¼ Iþ333;

t123 ¼ Iþ123 þ Iþ312 � Iþ231; t223 ¼ Iþ223; t332 ¼ Iþ332;

t113 ¼ Iþ113; t231 ¼ Iþ231 þ Iþ123 � Iþ312; t331 ¼ Iþ331;

t112 ¼ Iþ112; t221 ¼ Iþ221; t312 ¼ Iþ312 þ Iþ231 � Iþ123:

ð1:11:6:20Þ

Using equations (1.11.6.18) and (1.11.6.20), one can express all

nine elements of I�ijk through Iþijk:

I�231 ¼ Iþ123 � Iþ312; I�232 ¼ Iþ223 � Iþ232; I�233 ¼ Iþ233 � Iþ332;

I�311 ¼ Iþ311 � Iþ113; I�312 ¼ Iþ231 � Iþ123; I�313 ¼ Iþ331 � Iþ313;

I�121 ¼ Iþ112 � Iþ121; I�122 ¼ Iþ122 � Iþ221; I�123 ¼ Iþ312 � Iþ231;

ð1:11:6:21Þ

according to which the antisymmetric part of the dipole–quad-

rupole term is a linear function of the symmetric one [however,

not vice versa: equations (1.11.6.21) cannot be reversed].

Note that the equations (1.11.6.21) impose an additional

restriction on I�ijk, which applies to all atomic site symmetries:

I�123 þ I�231 þ I�312 ¼ 0: ð1:11:6:22Þ

This is, in fact, a well known result: the pseudo-scalar part of I�ijk
vanishes in the dipole–quadrupole approximation used in equa-

tion (1.11.6.3). Thus, for point symmetry 1, I�ijk has only eight

independent elements rather than nine. This additional restric-

tion works in all cases of higher symmetries provided the pseudo-

scalar part is allowed by the symmetry (i.e. point groups 2, 3, 4, 6,

222, 32, 422, 622, 23 and 432). All other symmetry restrictions on

I�ijk arise automatically from equation (1.11.6.21) taking into

account the symmetry of Iþijk [symmetry limitations on Iþijk and I�ijk
for all crystallographic point groups can be found in Sirotin &

Shaskolskaya (1982) and Nye (1985)].

Let us consider two examples, ZnO and anatase, TiO2, where

the dipole–dipole contributions to forbidden reflections vanish,

whereas both the symmetric and antisymmetric dipole-quadru-

pole terms are in principal allowed. In these crystals, the dipole–

quadrupole terms have been measured by Goulon et al. (2007)

and Kokubun et al. (2010).

In ZnO, crystallizing in the wurtzite structure, the 3m

symmetry of the atomic positions imposes the following restric-

tions on tijk:

t131 ¼ t223 ¼ e15; ð1:11:6:23Þ

t222 ¼ �t112 ¼ �t211 ¼ e22; ð1:11:6:24Þ

t311 ¼ t322 ¼ e31; ð1:11:6:25Þ

t333 ¼ e33; ð1:11:6:26Þ

where e15, e31, e22, e33 are energy-dependent complex tensor

elements [keeping the notations by Sirotin & Shaskolskaya

(1982), the x axis is normal to the mirror plane, the y axis is

normal to the glide plane and the z axis corresponds to the c

axis of ZnO]. If we suppose these restrictions for Zn at 1
3 ;

2
3 ; z,

then for the other Zn at 2
3 ;

1
3 ; zþ 1

2, which is related to the first site

by the glide plane, there is the following set of elements:

e15; e31;�e22; e33. Therefore, the structure factors of the glide-

plane forbidden reflections are proportional to e22.

For the symmetric and antisymmetric parts one obtains from

equations (1.11.6.17) and (1.11.6.18) the non-zero components

Iþ131 ¼ Iþ232 ¼ ðe15 þ e31Þ=2; ð1:11:6:27Þ

Iþ222 ¼ �Iþ121 ¼ �Iþ112 ¼ e22; ð1:11:6:28Þ

Iþ113 ¼ Iþ223 ¼ e15; ð1:11:6:29Þ

Iþ333 ¼ e33 ð1:11:6:30Þ

and

I�232 ¼ �I�311 ¼ Iþ113 � Iþ131 ¼ ðe15 � e31Þ=2: ð1:11:6:31Þ

Physically, we can expect that je15 þ e31j � je15 � e31j because

e15 þ e31 survives even for tetrahedral symmetry �43m, whereas

e15 � e31 is non-zero owing to a deviation from tetrahedral
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symmetry; in ZnO, the local coordinations of the Zn positions are

only approximately tetrahedral.

In the anatase structure of TiO2, the �4m2 symmetry of the

atomic positions imposes restrictions on the tensors tijk [keeping

the notations of Sirotin & Shaskolskaia (1982): the x and y axes

are normal to the mirror planes, and the z axis is parallel to the c

axis]:

t131 ¼ �t223 ¼ e15; ð1:11:6:32Þ

t311 ¼ �t322 ¼ e31; ð1:11:6:33Þ

where e15 and e31 are energy-dependent complex parameters. If

we apply these restrictions to the Ti atoms at 0; 0; 0 and 1
2 ;

1
2 ;

1
2,

then for the other two inversion-related Ti atoms at 0; 1
2 ;

1
4 and

1
2 ; 0; 3

4 (centre 2=m), the parameters are �e15 and �e31.

For the symmetric and antisymmetric parts one obtains as non-

vanishing components

Iþ131 ¼ �Iþ232 ¼ ðe15 þ e31Þ=2; ð1:11:6:34Þ

Iþ113 ¼ �Iþ223 ¼ e15 ð1:11:6:35Þ

and

I�232 ¼ I�311 ¼ Iþ131 � Iþ113 ¼ ðe31 � e15Þ=2: ð1:11:6:36Þ

It is important to note that the symmetric part Iþijk of the atomic

factor can be affected by a contribution from thermal-motion-

induced dipole–dipole terms. The latter terms are tensors of rank

3 proportional to the spatial derivatives @f dd
ij =@xk, which take the

same tensor form as Iþijk but are not related to I�ijk by equations

(1.11.6.21). In ZnO, which was studied in detail by Collins et al.

(2003), the thermal-motion-induced contribution is rather

significant, while for anatase the situation is less clear.

1.11.6.4. Tensor structure factors

Once the tensor atomic factors have been determined [either

from phenomenological expressions like (1.11.6.16), according

to the site-symmetry restrictions, or from given microscopic

expressions, e.g. (1.11.4.3)], tensor structure factors are obtained

by summation over the contributions of all atoms in the unit cell,

as in conventional diffraction theory:

FjmðHÞ ¼
P

t;u

otD
tu
jm expð�2�iH � rtuÞ exp½�WtuðHÞ�;

ð1:11:6:37Þ

FþjmnðHÞ ¼
P

t;u

otI
tuþ
jmn expð�2�iH � rtuÞ exp½�WtuðHÞ�;

ð1:11:6:38Þ

F�jmnðHÞ ¼
P

t;u

otI
tu�
jmn expð�2�iH � rtuÞ exp½�WtuðHÞ�;

ð1:11:6:39Þ

FjmnpðHÞ ¼
P

t;u

otQ
tu
jmnp expð�2�iH � rtuÞ exp½�WtuðHÞ�;

ð1:11:6:40Þ

where the index t enumerates the crystallographically different

types of scatterers (atoms belonging to the same or different

chemical elements), the index u denotes the crystallographically

equivalent positions; ot 
 1 is a site-occupancy factor, and

WtuðHÞ is the Debye–Waller temperature factor. The tensors of

the atomic factors, Dtu
jm, Ituþ

jmn , Itu�
jmn , Qtu

jmnp, are, in general, different

for crystallographically equivalent positions, that is for different

u, and it is exactly this difference that enables the excitation of

the resonant forbidden reflections.

Extinction rules and polarization properties for forbidden

reflections are different for tensor structure factors of different

ranks, a circumstance that may be used for experimental

separation of different tensor contributions (for tensors of

rank 2, information is given in Tables 1.11.2.1 and 1.11.2.2).

In the harmonic approximation, anisotropies of the atomic

thermal displacements (Debye–Waller factor) are also described

by tensors of rank 2 or higher, but, owing to these, excitations

of glide-plane and screw-axis forbidden reflections are not

possible.

1.11.6.5. Tensor atomic factors (magnetic case)

Magnetic crystals possess different densities of states with

opposite spin directions. During a multipole transition from the

ground state to an excited state (or the reverse), the projection of

an electron spin does not change, but the projection of the orbital

moment varies. The consideration of all possible transitions

allows for the formulation of the sum rules (Carra et al., 1993;

Strange, 1994) that are widely used in X-ray magnetic circular

dichroism (XMCD). When measuring the differences of the

absorption coefficients at the L2;3 absorption edges of transition

elements or at the M edges of rare-earth elements (Erskine &

Stern, 1975; Schütz et al., 1987; Chen et al., 1990), these rules

allow separation of the spin and orbital contributions to the

XMCD signal, and hence the study of the spin and orbital

moments characterizing the ground state. In magnetic crystals,

the tensors change their sign with time reversal because

p0a 6¼ p0�a if pa 6¼ p�a and/or !ca 6¼ !c�a (Zeeman splitting in a

magnetic field). That the antisymmetric parts of the tensors differ

from zero follows from equations (1.11.6.7), (1.11.6.10) and

(1.11.6.15).

Time reversal also changes the incident and scattered vectors

corresponding to permutation of the Cartesian tensor indices. For

dipole–dipole resonant events, the symmetric part Dþjk does not

vary with exchange of indices, hence it is time- and parity-even.

The antisymmetric part D�jk changes its sign upon permutation of

the indices, so it is parity-even and time-odd, being associated

with a magnetic moment (1.11.6.41). This part of the tensor

is responsible for the existence of X-ray magnetic circular

dichroism (XMCD) and the appearance of the magnetic satellites

in various kinds of magnetic structures.

If the rotation symmetry of a second-rank tensor is completely

described by rotation about the magnetic moment m, then the

antisymmetric second-rank tensor D�jk can be represented as

D�jk ¼ �jklml, where �jmk is an antisymmetric third-rank unit

tensor and ml are the coordinates of the magnetic moment of the

resonant atom. So, the scattering amplitude for the dipole–dipole

E1E1 transition can be given as

f dd ¼ �
e2

mc2

�

ðe0� � eÞC0s þ i½e0� 
 e� �msC1s

þ ½ðe0� �msÞðe �msÞ �
1
3ðe
0� � eÞ�C2s

�

:

ð1:11:6:41Þ

C0s, C1s and C2s are energy-dependent coefficients referring to the

sth atom in the unit cell and ms is a unit vector along the magnetic

moment. The third term in (1.11.6.41) is time non-reversal, and it

is responsible for the magnetic linear dichroism (XMLD). This

278



1.11. TENSORIAL PROPERTIES OF LOCAL CRYSTAL SUSCEPTIBILITIES

kind of X-ray dichroism is also influenced by the crystal field

(Thole et al., 1986; van der Laan et al., 1986).

The coefficients C0s, C1s and C2s involved in (1.11.6.41) may be

represented in terms of spherical harmonics. Using the relations

(Berestetskii et al., 1982; Hannon et al., 1988)

½e0� � Y1�1ðk
0ÞY�1�1ðkÞ � e�

¼
3

16�

�
ðe0� � eÞ � i½e0� 
 e� �ms � ðe

0� �msÞðe �msÞ
�

ð1:11:6:42Þ

and

½e0� � Y10ðk
0ÞY�10ðkÞ � e� ¼

3

8�
ðe0� �msÞðe �msÞ ð1:11:6:43Þ

for L ¼ 1, M ¼ �1 and L ¼ 0, M ¼ 0, respectively, one obtains

f dd
s ¼ �

3

4k

�

ðe0� � eÞðF11 þ F1�1Þ � i½e0� 
 e� �msðF11 � F1�1Þ

þ ðe0� �msÞðe �msÞð2F10 � F11 � F1�1Þ




ð1:11:6:44Þ

with

FLMð!Þ ¼
X

a;c

papac

�xðaMc;ELÞ

Ec � Ea � h- !� i�=2
; ð1:11:6:45Þ

where pa is the probability of the initial state a, pac is that for the

transition from state a to a final state c, and �x=� is the ratio of

the partial line width of the excited state due to a pure 2L ðELÞ

radiative decay and the width due to all processes, both radiative

and non-radiative (for example, the Auger decay).

Magnetic ordering is frequently accompanied by a local

anisotropy in the crystal. In this case, both kinds of local aniso-

tropies exist simultaneously and must be taken into account in,

for example, XMLD (van der Laan et al., 1986) and XM�D

(Goulon et al., 2002). In resonant X-ray scattering experiments,

simultaneous existence of forbidden reflections provided by spin

and orbital ordering (Murakami et al., 1998) as well as magnetic

and crystal anisotropy (Ji et al., 2003; Paolasini et al., 2002, 1999)

have been observed. The explicit Cartesian form of the tensor

atomic factor in the presence of both a magnetic moment and

crystal anisotropy has been proposed by Blume (1994). When the

symmetry of the atomic site is high enough, i.e. the atom lies on

an n-order axis (n> 2), then the tensors Dþ and D� can be

represented as

Dþjk ¼ ðzjzk �
1
3�jkÞ½a1 þ b1ðz �mÞ

2
� þ c1ðmjmk �

1
3m

2�jkÞ

þ d1½zjmk þ zkmj �
2
3ðz �mÞ�jkÞ�ðz �mÞ ð1:11:6:46Þ

and

D�jk ¼ i�jkl½a2ml þ b2zlðz �mÞ�; ð1:11:6:47Þ

where ai and bi depend on the energy, and z is a unit vector along

the symmetry axis under consideration. One can see that the

atomic tensor factor is given by a sum of three terms: the first is

due to the symmetry of the local crystal anisotropy, the second

describes pure magnetic scattering, and the last (‘combined’)

term is induced by interference between magnetic and non-

magnetic resonant scattering. This issue was first discussed by

Blume (1994) and later in more detail by Ovchinnikova &

Dmitrienko (1997, 2000). All the terms can give rise to forbidden

reflections, i.e. sets of pure resonant forbidden magnetic and non-

magnetic reflections can be observed for the same crystal, see Ji et

al. (2003) and Paolasini et al. (2002, 1999). Only reflections caused

by the ‘combined’ term (Ovchinnikova & Dmitrienko, 1997) have

not been observed yet.

Neglecting the crystal field, an explicit form of the fourth-rank

tensors describing the quadrupole–quadrupole E2E2 events in

magnetic structures was proposed by Hannon et al. (1988) and

Blume (1994):

Q�ijkm ¼ a1f�iklml�jm þ �jmlml�ik þ �imlml�jk þ �jklml�img

þ b2f�iklmlmjmm þ �jmlmlmimk þ �imlmlmjmk

þ �jklmlmimmg; ð1:11:6:48Þ

Qþijkm ¼ a2�ij�km þ b2f�ik�jm þ �im�jkg

þ c2f�ikmjmm þ �immjmk þ �jmmimk þ �jkmimmg

þ d2f�ijmkmm þ �kmmimjg þ e2mimjmkmm

þ f2f�ikl�jmpmlmp þ �iml�jkpmlmpg: ð1:11:6:49Þ

Then, being convoluted with polarization vectors, the scat-

tering amplitude of the quadrupole transition (L ¼ 2) can be

written as a sum of 13 terms belonging to five orders of magnetic

moments (Hannon et al., 1988; Blume, 1994). The final expression

that gives the quadrupole contribution to the magnetic scattering

amplitude in terms of individual spin components is rather

complicated and can be found, for example, in Hill & McMorrow

(1996). In the presence of both a magnetic moment and local

crystal anisotropy, the fourth-rank tensor describing E2E2 events

depends on both kinds of anisotropy and can include the

‘combined’ part in explicit form, as found by Ovchinnikova &

Dmitrienko (2000).

1.11.6.6. Tensor atomic factors (spherical tensor representation)

Another representation of the scattering amplitude is widely

used in the scientific literature (Hannon et al., 1988; Luo et al.,

1993; Carra et al., 1993; Lovesey & Collins, 1996) for the

description of resonant multipole transitions. In order to obtain

the scattering amplitude and intensity for a resonant process

described by some set of spherical tensor components, the tensor

that describes the atomic scattering must be contracted by a

tensor of the same rank and inversion/time-reversal symmetry

which describes the X-ray probe, so that the result would be a

scalar. There are well known relations between the components

of the atomic factor tensor, both in Cartesian and spherical

representations. For the dipole–dipole transition, the resonant

scattering amplitude can be written as (Hannon et al., 1988;

Collins et al., 2007; Paolasini, 2012; Joly et al., 2012)

f dd �
P

jm

e0�j emDjm ¼
P2

p¼0

Pp

q¼�p

ð�1Þpþq
X ðpÞq FðpÞ�q; ð1:11:6:50Þ

where Djm are the Cartesian tensor components, X ðpÞq depends

only on the incident and scattered radiation and the polarization

vectors, and FðpÞ�q is associated with the tensor properties of the

absorbing atom and can be represented in terms of a multipole

expansion.

It is convenient to decompose each tensor into its irreducible

parts. For example, an E1E1 tensor containing nine Cartesian

components can be represented as a sum of three irreducible

tensors with ranks p ¼ 0 (one component), p ¼ 1 (three

components) and p ¼ 2 (five components). This decomposition is

unique.
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For p ¼ 0:

F
ð0Þ
0 ¼

1
3ðDxx þDyy þDzzÞ: ð1:11:6:51Þ

For p ¼ 1:

F
ð1Þ
0 ¼

1
2ðDxy �DyxÞ;

F
ð1Þ
�1 ¼ �

1
2
ffiffi
2
p ½ðDyz �Dzy � iðDxz �DzxÞ�: ð1:11:6:52Þ

For p ¼ 2:

F
ð2Þ
0 ¼ Dzz � F

ð0Þ
0 ;

F
ð2Þ
�1 ¼ �

1
2

ffiffi
2
3

q
½ðDxz þDzx � iðDyz þDzyÞ�; ð1:11:6:53Þ

F
ð2Þ
�2 ¼

1
6½2Dxx � 2Dyy � iðDxy þDyxÞ�: ð1:11:6:54Þ

It follows from (1.11.6.14) that the fourth-rank tensor

describing the quadrupole–quadrupole X-ray scattering can also

be divided into two parts: the time-reversal part, Qþjklm, and the

non-time-reversal part, Q�jklm. Both can be explicitly represented

by (1.11.6.3) and (1.11.6.2), in which all these tensors are parity-

even. The explicit form of the fourth-rank tensors is suitable for

the analysis of possible effects in resonant X-ray absorption and

scattering. Nevertheless, sometimes the following representation

of the scattering amplitude as a product of spherical tensors is

preferable:

f qq ¼ 1
4

P

ijmn

e0�i emk0jknQijmn ¼
P4

p¼0

Pp

q¼�p

ð�1Þpþq
X ðpÞq FðpÞ�q: ð1:11:6:55Þ

Here, the dipole–quadrupole tensor atomic factor given by

(1.11.6.10) is represented by a sum over several tensors with

different symmetries. All tensors are parity-odd, but the tensors

I��jml and I�þjml are also non-time-reversal. The scattering amplitude

corresponding to the dipole–quadrupole resonant X-ray scat-

tering can be represented as

f dq ¼ 1
2i
P

ijm

e0�i ejðkmIijm � k0mIjimÞ

¼
P3

p¼1

Pp

q¼�p

ð�1Þpþq
ðX ðpÞq FðpÞ�q þ

�X ðpÞq
�FðpÞ�qÞ: ð1:11:6:56Þ

The explicit form of FðpÞ�q can be found in Marri & Carra (2004).

Various parts of FðpÞ�q possess different symmetry with respect to

the reversal of space P and time T.

The spherical representation of the tensor atomic factor allows

one to analyse its various components, as they possess different

symmetries with respect to rotations or space and time inversion.

For each p, FðpÞ�q is related to a specific term of the multipole

expansion of the system. Multipole expansions of electric and

magnetic fields generated by charges and permanent currents are

widely used in characterizing the electromagnetic state of a

physical system (Berestetskii et al., 1982). The transformation

rules for electric and magnetic multipoles of both parities under

space inversion and time reversal are of great importance for

electromagnetic effects in crystals. The correspondence between

the FðpÞ�q and electromagnetic multipoles is shown in Table

1.11.6.2. In this table, the properties of the tensors FðpÞ�q under

time reversal and space inversion on one side are identified

with multipole terms describing the physical system on the

other. In fact, for any given tensor of rank p ¼ 1; 2; 3; 4 there is

one electromagnetic multipole of the same rank (1! dipole,

2! quadrupole, 3! octupole, 4! hexadecapole) and

with the same T and P properties. Note that P-odd E1E2

tensors have both T-odd (�) and T-even (+) terms for any p,

whereas P-even tensors (both E1E1 and E2E2) are T-odd for

odd rank and T-even for even rank, respectively (Di Matteo et

al., 2005).

An important contribution of Luo et al. (1993) and Carra et al.

(1993) consisted of expressing the amplitude coefficients in terms

of experimentally significant quantities, electron spin and orbital

moments. This procedure is valid within the fast-collision

approximation, when either the deviation from resonance,

�E ¼ Ec � Ea � h- !, or the width, �, is large compared to the

splitting of the excited-state configuration. The approximation is

expected to hold for the L2 and L3 edges of the rare earths and

actinides, as well as for the M4 and M5 edges of the actinides. In

this energy regime, the resonant factors can be summed inde-

pendently, leaving amplitude coefficients that may be written in

terms of multipole moment operators, which are themselves

single-particle operators summed over the valence electrons in

the initial state.

Magnetic scattering has become a powerful method for

understanding magnetic structures (Tonnere, 1996; Paolasini,

2012), particularly as it is suitable even for powder samples

(Collins et al., 1995). Since the first studies (Gibbs et al., 1988),

resonant magnetic X-ray scattering has been observed at various

edges of transition metals and rare earths. The studies include

magnetics and multiferroics with commensurate and incom-

mensurate modulation (Walker et al., 2009; Kim et al., 2011; Ishii

et al., 2006; Partzsch et al., 2012; Lander, 2012; Beale et al., 2012;

Lovesey et al., 2012; Mazzoli et al., 2007) as well as multi-k

magnetic structures (Bernhoeft et al., 2012), and structures with

orbital ordering (Murakami et al., 1998) and higher-order

multipoles (Princep et al., 2011). It has also been shown that

effects can be measured not only at the edges of magnetic atoms

[K edges of transition metals, L edges of rare-earth elements and

M edges of actinides (Vettier, 2001, 2012)], but also at the edges

of non-magnetic atoms (Mannix et al., 2001; van Veenendaal,

2003).

Thus, magnetic and non-magnetic resonant X-ray diffraction

clearly has the potential to be an important working tool in

modern materials research. The advantage of polarized X-rays is

their sensitivity to both the local atomic environments of reso-

nant atoms and their partial structures. The knowledge of the

local and global crystal symmetries and of the interplay of their

effects is therefore of great value for a better understanding of

structural, electronic and magnetic features of crystalline

condensed matter.
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Table 1.11.6.2. Identification of properties under time inversion T and space
inversion P of tensors associated with multipole expansion

After Di Matteo et al. (2005) and Paolasini (2012).

Rank of
tensor

Resonant
process T P Type Multipole

0 E1E1 + + charge monopole
0 E2E2 + + charge monopole
1 E1E1 � + magnetic dipole
1 E2E2 � + magnetic dipole
1 E1E2 + � electric dipole
1 E1E2 � � polar toroidal dipole
2 E1E1 + + electric quadrupole
2 E2E2 + + electric quadrupole
2 E1E2 + � axial toroidal quadrupole
2 E1E2 � � magnetic quadrupole
3 E2E2 � + magnetic octupole
3 E1E2 + � electric octupole
3 E1E2 � � polar toroidal octupole
4 E2E2 + + electric hexadecapole
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1.11.7. Glossary

�ðrÞ local susceptibility tensor in direct space

�ðHÞ Fourier components of the local

susceptibility tensor

H reciprocal-lattice vector

e polarization vector of an X-ray wave

k wavevector of an X-ray wave

R
g
ij matrix corresponding to point-group

operator g

r polarization vector perpendicular to the

scattering plane

p polarization vector in the scattering plane

� Bragg angle

’ azimuthal angle of rotation about a

reciprocal-lattice vector

AðrÞ vector potential of the electromagnetic

wave

PðrÞ momentum of an electron

! frequency of an electromagnetic wave

� wavelength of the radiation

Ei energy of a discrete atomic level

s spin of an electron

f ðk; e; k0; e0Þ scattering amplitude

G scattering vector

�ijk Levi-Civita symbol

!ca transition frequency for states a and c

� energy width of the excited state

pa probability that the state jai of the

scatterer is occupied

fjk tensor atomic factor

FjkðHÞ structure-factor tensor of rank 2

IHðe
0; eÞ intensity of the reflection

EL notation of the electric multipole

transition. E1: the dipole; E2: the

quadrupole

ML notation of the magnetic multipole

transition

L orbital moment of electron

Djk dipole–dipole tensor atomic factor

Dþjk symmetric part of the dipole–dipole tensor

atomic factor

D�jk antisymmetric part of the dipole–dipole

tensor atomic factor

Ijkl third-rank tensor describing the dipole–

quadrupole resonant X-ray scattering

Iþþjkl part of the third-rank tensor invariant

under time inversion and symmetric

under the permutation of j and k

Iþ�jkl part of the third-rank tensor non-invariant

under time inversion and symmetric

under the permutation of j and k

I�þjkl part of the third-rank tensor invariant

under time inversion and antisymmetric

under the permutation of j and k

I��jkl part of the third-rank tensor non-invariant

under time inversion and antisymmetric

under the permutation of j and k

Qijkl fourth-rank tensor describing the

quadrupole–quadrupole resonant X-ray

scattering

Tr trace of matrix

m magnetic moment of an atom

YLM spherical tensor

X ðpÞq component of the spherical tensor

depending only on the incident and

scattered radiation

FðpÞ� q component of the spherical tensor

associated with the tensor properties of

the absorbing atom
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