List of terms and symbols used in this volume | (1) Vector spaces and tensor analysis | | Representation of point group K | D(K) | |--|-------------------------------------|--|--| | Basis vectors in direct space (covariant) | $\mathbf{e}_i, \mathbf{a}_i$ | Space group | G, \mathcal{G} (Part 3) | | Basis vectors in reciprocal space (contravariant) | $\mathbf{e}^{i},\mathbf{a}_{i}^{*}$ | Tetrahedral group | T | | Contravariant components of vectors in direct | | | | | space | x^i | | | | Covariant components of vectors in reciprocal | | (3) Physical properties | | | space | x_i | (a) Elastic properties | | | Direction indices (of a lattice row) | [uvw] | Bulk modulus (volume isothermal compressibility) | κ | | Dual (or reciprocal) space (n dimensions) | E_n (Chapter 1.1) | Components of the displacement vector | u_i | | Element of | \in | Elastic compliances (second-order) | S_{ijkl} | | Euclidian space, direct space (n dimensions) | E^n | Elastic compliances (second-order adiabatic) | $(s_{ijkl})^{\sigma}$ | | Hermitian conjugate of matrix M | M^+ | Elastic compliances (second-order reduced) | $S_{\alpha\beta}$ | | Integers (positive) | \mathbb{Z}^+ | Elastic compliances (third-order) | S_{ijklmn} | | Integers (ring of) | \mathbb{Z} | Elastic stiffnesses (second-order) | c_{ijkl}, C_{ijkl} | | Kronecker symbol | δ_i^j | Elastic stiffnesses (second-order adiabatic) | $(c_{ijkl})^{\sigma}$ | | Metric tensor | g_{ij} | Elastic stiffnesses (second-order reduced) | $c_{\alpha\beta}$ | | Miller indices (of a lattice plane) | (hkl) | Elastic stiffnesses (third-order) | C_{ijklmn} | | Nabla operator | ∇ | Lamé coefficients | λ | | Orthogonal transformation | R | Normal stress | \vec{v} | | Outer product | \bigwedge | Poisson's ratio | ν | | Partial derivative with respect to x_i | ∂_i | Pressure | p | | Permutation tensor | $arepsilon_{ijk},\hat{e}_{ijk}$ | Shear stress | $\vec{ au}$ | | Position vector in reciprocal space | G, k | Strain tensor | S_{ij} , u_{ij} (Chapters | | Reciprocal lattice vector | \mathbf{g}_{hkl} | | 1.4, 1.5 and 3.1), | | Sum of spaces | \oplus | | η_{ij} (Chapter 2.3) | | Tensor of rank n , p times covariant and q times | j_1j_a | Strain Voigt matrix | S_{α} | | contravariant $(n = p + q)$ | $t_{i_1i_p}^{j_1j_q}$ | Stress tensor | T_{ij} , τ_{ij} (Chapter | | Tensor product | \otimes | | 1.4), σ_{ij} (Chapters | | Transpose of matrix M | M^T | | 2.1, 2.3, 2.4) | | Unit transformation, matrix or element | E | Stress Voigt matrix | T_{α} | | Vector in superspace | a _{si} | Velocity of sound | v | | Vector in reciprocal superspace | a* | Volume | V | | Vector product Volume element | ^, × | Volumic mass | ρ | | | dτ
(U*) | Young's modulus | E | | Volume of unit cell in direct (reciprocal) space | $V\left(V^{st} ight)$ | | | | | | (I) El | | | | | (b) Electric properties | | | (2) Group theory | | Charge density | $\rho(\mathbf{r})$ | | Character | χ | Charge of the electron | <i>e</i> | | Character (irreducible) | χ_{α} | Current density | $\mathbf{j}(\mathbf{r}), J$ | | Character (value at R) | $\chi(R)$ | Dielectric impermeability Dielectric permittivity or constant | η_{ij} | | Class multiplication constants | c_{ijk} | Dielectric permittivity of constant Dielectric permittivity of vacuum | ε | | Conjugacy class | C_i | Dielectric permittivity of vacuum Dielectric permittivity tensor | ε_0 | | Cyclic group of order m | C_m | Dielectric permittivity tensor (adiabatic) | $egin{aligned} arepsilon_{ij} \ (arepsilon_{ij})^{\sigma} \end{aligned}$ | | Dihedral group of order 2 <i>n</i> | D_n^m | Dielectric susceptibility | • | | Dimension of irreducible representation α | $d_{lpha}^{''}$ | Dielectric susceptibility (nth-order) | χ_{ij}^e, χ_{ijk} $\chi^{(n)}$ | | Lattice translation subgroup | T(n) | Effective mass of the electron | m^* | | Matrix representation of point group <i>K</i> | $\Gamma(K)$ | Electric dipole operator | \hat{p} | | Multiplicity | m_{α} | Electric displacement | \mathbf{D} | | Octahedral group | O | Electric field | E | | Order of class C_i | n_i | Electric polarization | P | | Orthogonal group | O(n) | Electric polarization (<i>n</i> th-order) | \mathbf{P}_n | | Orthogonal group (special) | SO(n) | Electric polarization (nonlinear) | \mathbf{P}^{NL} | | Physically irreducible representation | R-irep | Electro-optic tensor | r_{ijk} | | Point group | K (Chapter 1.2), | Electrostriction tensor | Q_{ijkl} | | | G_o (Chapter 2.1), | Electrostriction tensor (reduced) | $Q_{lphaeta}$ | | | G (Part 3) | Hall constant | $R_{H \ ijk}$ | | Point group (order of) | K , N | Piezoelectric tensor | d_{ijk} | | | | | yr | ## LIST OF TERMS AND SYMBOLS | Piezoelectric tensor at constant strain | e_{ijk} | Refractive index of light | n | |--|--|---|--| | Piezoelectric tensor (reduced) | $d_{i\alpha}$ | Refractive index (ordinary) | n_o | | Piezoelectric tensor (reduced adiabatic) | $\left(d_{ijk}\right)^{\sigma}$ | Refractive indices for biaxial indicatrix | $n_x, n_\alpha, \alpha; n_y, n_\beta, \beta;$ | | Piezoelectric tensor (reduced inverse) | $d_{lpha i}$ | | n_z, n_γ, γ | | Pyroelectric tensor | p_i | Velocity of light in a vacuum | C | | | | Velocity (group) | v_g | | | | Wavelength of light | λ | | (c) Magnetic properties | | Wavevector of light propagating in crystal | $\mathbf{k} \; (k = 2\pi/\lambda)$ | | Antiferromagnetic vector | \mathbf{L}_i | | | | Bohr magneton | $\mu_{\scriptscriptstyle B}$ | | | | Constant describing magnetostriction | λ | | | | Effective number of Bohr magnetons | p (Section 1.6.1) | (e) Thermodynamic properties | | | Landé g-factor | g | Anisotropy energy | U_a | | Magnetic birefringence | Δn | Atomic Debye–Waller factor (static) | S_{lpha} | | Magnetic field | H | Atomic Debye–Waller factor (thermal) | T_{α} | | Magnetic induction | В | Boltzmann constant | k_B | | Magnetic moment | μ | Debye frequency | ω_D | | Magnetic moment density | m(r) | Debye temperature | Θ_D | | Magnetic permeability | μ_{ij} | Einstein frequency | ω_E | | Magnetic permeability of vacuum | μ_o | Einstein temperature | Θ_E | | Magnetic susceptibility | χ_{ij}, χ_{ij}^m | Elastic energy | $U_{ m el}$ | | Magnetization (= magnetic moment per unit | ∧ij, ∧ij | Entropy | σ , S | | volume = ferromagnetic vector) | M | Free energy | $\mathcal{G}, \mathcal{F}, F, A$ | | Magnetoelastic energy | $U_{ m me}$ | Grüneisen parameter | $\bar{\gamma}, \gamma$ | | Magnetoelastic energy Magnetoelectric tensor (linear) | | Grüneisen parameter (averaged mode) | | | Magnetoelectric tensor (nonlinear) EHH | $lpha_{ij} \ eta_{ijk}$ | Grüneisen parameter (averaged mode) Grüneisen parameter (generalized mode) | $\gamma_{\mathbf{q},j}$ | | Magnetoelectric tensor (nonlinear) <i>ETTI</i> Magnetoelectric tensor (nonlinear) <i>HEE</i> | | Hamiltonian | $egin{array}{l} {m{\gamma}}_{{f q}j,kl} \ H \end{array}$ | | Magneto-optic tensor | $oldsymbol{\gamma}_{ijk}$ $oldsymbol{f}$ | Heat current | J_Q | | Néel temperature | T_N | Internal energy | $\overset{J_{\mathcal{Q}}}{U},\mathcal{U}$ | | Orbital angular momentum | L (Section 1.6.1.1) | Lattice energy | | | Piezomagnetic components | , | Partition function | $ rac{E_{ m ph}}{Z}$ | | Piezomagnetic components (reduced) | Λ_{ijk} | Phonon wavevector | | | Piezomagnetoelectric tensor | Λ_{ilpha} | Seebeck coefficient | q
S | | Spin angular momentum (of an atom or ion) | π_{ijkl} ${f S}$ | Specific heat at constant strain (volume) | c^S, c_V | | Spin density | S(r) | Specific heat at constant strain (votanic) | c^T, c_p | | Sum of the magnetic moments in a unit cell | m | Specific heat at constant volume (according to the | c , c_p | | Sum of the magnetic moments in a unit cell, in | 111 | Debye model) | $c_V^{ m Debye}$ | | which some of the moments are taken with | | Specific heat at constant volume (according to the | c_V | | opposite sign | \mathbf{l}_i | Einstein model) | $c_V^{ m Einstein}$ | | Total angular momentum | J | Temperature | Θ , T | | Weiss constant | Δ | Temperature-stress components | λ_{ij} | | , reiss constant | _ | Thermal conductivity | K | | | | Thermal expansion | α_{ij} | | | | Thermal expansion (volume) | β | | (d) Optical properties | | Thermodynamic potential | Φ | | Angle between optic axes | 2V | Zero-point energy | E_o | | Cyclic (or circular) frequency | ω | zero pome onergy | Σ_0 | | Elasto-optic (strain-optic) tensor | p_{ijkl} | | | | Elasto-optic (strain-optic) tensor, reduced | $p_{lphaeta}$ | | | | Electro-optic tensor | r_{ijk} | | | | Ellipticity of wave | κ | (f) Local crystal susceptibilities | | | Gyration susceptibility | γ_{ijl} | Local susceptibility tensor in direct space | $\chi(\mathbf{r})$ | | Gyration tensor | g_{ij},G_{ij} | Fourier components of the local | $\chi(\mathbf{H})$ | | Gyration vector | G | susceptibility tensor | | | Optical rotatory power | ρ | Dipole-dipole tensor atomic factor | D_{jk} | | Phase difference of light | Δ | Symmetric part of the dipole-dipole tensor | D_{jk}^+ | | Piezo-optic tensor | π_{ijkl} | atomic factor | | | Piezo-optic tensor (reduced) | $\pi_{lphaeta}$ | Antisymmetric part of the dipole-dipole | D_{jk}^- | | Polarizability operator | \hat{lpha} | tensor atomic factor | | | Poynting vector | S | Third-rank tensor describing the dipole- | I_{jkl} | | Poynting vector (unit) | s, ŝ | quadrupole resonant X-ray scattering | | | Raman tensor | $R^{j}(\mathbf{q})$ | Part of the third-rank tensor invariant | I_{jkl}^{++} | | Rayleigh length | Z_r | under time inversion and symmetric | | | Refractive index (extraordinary) | n_e | under the permutation of j and k | | ## LIST OF TERMS AND SYMBOLS | Part of the third-rank tensor non-invariant under time inversion and symmetric | I_{jkl}^{+-} | Space group of ferroic (low-symmetry) phase | \mathcal{F} (Chapters 3.1 and 3.4) | |--|-----------------|--|--| | under the permutation of j and k | | Space group of parent (high-symmetry) | ${\cal G}$ | | Part of the third-rank tensor invariant | I_{jkl}^{-+} | phase | | | under time inversion and antisymmetric | | Symmetry descent from G to F (point groups) | $G \Downarrow F$ | | under the permutation of j and k | | Symmetry descent from $\mathcal G$ to $\mathcal F$ (space groups) | $\mathcal{G} \Downarrow \mathcal{F}$ | | Part of the third-rank tensor non-invariant under time inversion and antisymmetric | $I_{jkl}^{}$ | Eigensymmetry of untwinned crystal or daughter phase | \mathcal{H} (Chapter 3.3) | | under the permutation of j and k | | Transition temperature, in particular: Curie | T_C | | Fourth-rank tensor describing the quadrupole- | Q_{ijkl} | temperature | | | quadrupole resonant X-ray scattering | , | Order of group $\mathcal{G}, \mathcal{H}, \mathcal{K}$ | $ \mathcal{G} , \mathcal{H} , \mathcal{K} $ | | | | Index of \mathcal{H} in \mathcal{G} , or of \mathcal{H} in \mathcal{K} | [i] | | | | Aizu symbol of a ferroic phase transition | $\mathcal{G}F\mathcal{H}$ or $\mathcal{G} > F$ | | (A) Dhasa tugusfamustiana and tuinning | | (ferroic species); $F = \text{ferroic}$ | 10 | | (4) Phase transformations and twinning | | Composite symmetry group of a twinned | \mathcal{K} | | Order parameter (primary) | η | crystal (domain pair); twin symmetry | | | Order parameter (secondary) | λ | Reduced composite symmetry of the domain | $\mathcal{K}_{1,2}^*,\mathcal{K}^*$ | | Point group of ferroic (low-symmetry) phase | F (Chapters 3.1 | pair (1, 2) | | | | and 3.4) | Extended composite symmetry of a twinned | $\mathcal{K}(n)$ | | Point group of parent (high-symmetry) phase | G | crystal with a pseudo n-fold twin axis | |