
5. SCANNING OF SPACE GROUPS

(i) elements that leave invariant both the black and white
crystals (both single domain states) and the normal to the plane;

(ii) elements that exchange the black and white crystals (single
domain states) and invert the normal to the plane.

Example: Consider the bicrystal consisting of two face-centred
cubic crystals misoriented by a rotation of 36.9� about the [001]
direction. The corresponding dichromatic complex is shown in
Fig. 5.2.5.3. The symmetry group of the complex is the space
group I4=mmm, D17

4h (No. 139).
Vlachavas (1985) has tabulated the symmetries of bicrystals

arising when the above dichromatic complex is transected with
planes of various orientations and locations. For planes of the
orientation (001), given with reference to the tetragonal coordi-
nate system shown in Fig. 5.2.5.3, Vlachavas lists

Orientation of plane Position of plane

(001) 0, 1
2

1
4,

3
4 Other

Symmetry group of the bicrystal p422 p4212 p411

The position of the plane is given in terms of a fraction of the
basis vector of the tetragonal c axis. The ‘p’ in the symbol of the
symmetry groups of the bicrystal denotes all translations in the
(001) plane.

From the subtable for the space group I4=mmm, D17
4h (No. 139)

in the scanning tables, Part 6, one finds

Orientation of plane Position of plane

(001) 0, 1
2

1
4,

3
4 Other

Sectional layer group p4=mmm p4=mmm p4mm

The symmetry group of the bicrystal is that subgroup of the
corresponding sectional layer group consisting of all elements
that satisfy one of the two conditions given above. For example,
for the plane at position ‘0’, the sectional layer group is p4=mmm
(L61). None of the mirror planes satisfies either of the conditions.
The mirror plane perpendicular to [001] inverts the normal to the
plane but leaves invariant both black and white crystals. The
mirror planes perpendicular to [001] and [010] leave the normal
to the plane invariant, but exchange the black and white crystals.
The fourfold rotation satisfies condition (i), and the twofold
rotations about auxiliary axes satisfy condition (ii). Consequently,
from the sectional layer groups p4=mmm (L61), p4=nmm (L64)
and p4mm (L55) one obtains the respective symmetries of the
bicrystal with different locations of interfaces: p422 (L53), p4212
(L54) and p4 (L49), as listed by Vlachavas.

5.2.5.3. The symmetry of domain twins and domain walls

The symmetry of domain twins with planar coherent domain
walls and the symmetry of domain walls themselves are also
described by layer groups (see e.g. Janovec et al., 1989), from
which conclusions about the structure and tensorial properties of
the domain walls can be deduced. The derivation of the layer
symmetries of twins and domain walls is again facilitated by the
scanning tables. As shown below, the symmetry of a twin is in
general expressed through four sectional layer groups, where the
central plane of the interface is considered as the section plane of
an ordered and unordered domain pair. The relations between
the symmetries and possible conclusions about the structure of
the wall will be illustrated by an analysis of a domain twin in
univalent mercurous halide (calomel) crystals.

A twin is a particular case of a bicrystal in which the relative
orientation and/or displacement of the two components is not
arbitrary; it is required that the operation that sends one of the
components to the other is crystallographic. A domain twin is a
special case where the structures S1 and S2 of the two compo-
nents (domains) are distortions of a certain parent structure S,
the symmetry of which is a certain space group G, called the
parent group. The parent structure S is either a real structure, the

distortions of which are due to a structural phase transition, or it
is a hypothetical structure. If the symmetry of one of the distorted
structures S1 is F 1, then, from the coset decomposition

G ¼ F 1 [ g2F 1 [ . . . [ gpF 1 ð5:2:5:1Þ
we obtain p ¼ ½G : F 1� equivalent distorted structures Si ¼ giS1,
i ¼ 1; 2; . . . ; p, with symmetries F i ¼ giF 1g

�1
i which form a set

of conjugate subgroups of G.
Hence, a domain twin is always connected with a certain

symmetry descent from a space group G to a set of conjugate
subgroups F i. The distorted structures Si are called the single
domain states. A domain twin consists of two semi-infinite regions
(half-spaces), called domains, separated by a planar interface
called the central plane. The structures at infinite distance from
this plane coincide with the domain states. The structure in the
vicinity of the central plane is called the domain wall. The aim of
the symmetry analysis is to determine the possible structure of
the domain wall.

Basic theory: We consider a domain twin in which the domains
are occupied by single domain states S1 and S2. To define the twin
uniquely, we first observe that Miller indices ðhklÞ or corre-
sponding normal n to the interface (central plane of the domain
wall) define not only the orientation Vða0; b0Þ of the wall but also
its sidedness, so that one can distinguish between the two half-
spaces. The normal n points from one of the half-spaces to the
other while �n points in the opposite direction. The twin is then
defined uniquely by the symbol ðS1jn; sdjS2Þ = ðS1jðhklÞ; sdjS2Þ,
which means that the domains are separated by the plane
ðPþ sd;Vða0; b0ÞÞ of orientation Vða0; b0Þ and location sd, where
d is the scanning vector. The symbol also specifies that the normal
n points from the half-space occupied by domain state S1 to the
half-space occupied by domain state S2.

Now we consider the changes of the twin under the action of
those isometries which leave the plane ðPþ sd;Vða0; b0ÞÞ invar-
iant. The action of such an isometry g on the twin is expressed by
gðS1jnjS2Þ ¼ ðgS1jbggnjgS2Þ, wherebgg is the linear constituent of the
isometry g and bggn ¼ �n. Among these isometries, there are in
general two kinds which define the symmetry of the twin and two
which reverse the twin. The symbols for these four kinds of
operations, their action on the initial twin ðS1jnjS2Þ, their
graphical representation and the names of the resulting twins are
as shown in Fig. 5.2.5.4.

An auxiliary notation has been introduced in which an asterisk
labels operations that exchange the domain states and an
underline labels operations that change the normal to the plane
of the wall. To avoid misinterpretation (the symbolism is similar
to that of the symmetry–antisymmetry groups), let us emphasize
that neither the asterisk nor the underline have any meaning of
an operation; they are just suitable labels which can be omitted
without changing the meaning of general or specific symbols of
the isometries. Operations with these labels mean the same as if
the labels are dropped.

The operations f12 leave invariant the normal n as well as the
states S1 and S2. Such operations are called the trivial symmetry
operations of a domain twin and they constitute a certain layer
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Fig. 5.2.5.4. The four types of operations on a twin.
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group bFF12. The t�12 exchange the half-spaces because they invert
the normal n and at the same time they exchange the domain
states S1 and S2. As a result they leave the twin invariant,
changing only the direction of the normal. These operations are
called the non-trivial symmetry operations of a domain twin. If t�12
is one such operation, then all these operations are contained in a
coset t�12bFF12. Operations s12, called the side-reversing operations,
exchange the half-spaces, leaving the domain states S1 and S2

invariant, and operations r�12, called the state-reversing operations,
exchange the domain states S1 and S2, leaving the half-spaces
invariant.

The symmetry group TðS1jn; sdjS2Þ, or in short T12, of the twin
ðS1jn; sdjS2Þ can therefore be generally be expressed as

T12 ¼bFF12 [ t�12bFF12; ð5:2:5:2Þ
wherebFF12 is a group of all trivial symmetry operations and t�12bFF12

is the coset of all non-trivial symmetry operations of the twin.
The group T12 is a layer group which can be deduced from four

sectional layer groups of two space groups which describe the
symmetry of two kinds of domain pairs formed from the domain
states S1 and S2 (Janovec, 1972):

An ordered domain pair ðS1;S2Þ 6¼ ðS2;S1Þ is an analogue of
the dichromatic complex in which we keep track of the two
components. The symmetry group of this pair must therefore
leave invariant both domain states and is expressed as the
intersection

F 12 ¼ F 1 \ F 2 ¼ F 1 \ g12F 1g
�1
12 ð5:2:5:3Þ

of symmetry groups F 1 and F 2 ¼ g12F 1g
�1
12 of the respective

single domain states S1 and S2, where g12 is an operation trans-
forming S1 into S2: S2 ¼ g12S1.

The sectional layer group �FF12 of the central plane with normal
n and at a position sd under the action of the space group F 12 is
generally expressed as

�FF12 ¼bFF12 [ s12bFF12; ð5:2:5:4Þ
where the halving subgroup bFF12 is the floating sectional layer
group at a general position sd. The operation s12 inverts the
normal n and thus exchanges half-spaces on the left and right
sides of the wall, where the left side is occupied by the state S1

and the right side by the state S2 in the initial twin. These
operations appear only at special positions of the central plane.
Since the half-spaces are occupied by domain states S1 and S2,
their exchange is accompanied by an exchange of domain states
on both sides of the wall. The operation s12 changes neither S1

nor S2 and hence it results in a reversed domain twin which has
domain state S2 on the left side and the domain state S1 on the
right side of the wall.

The unordered domain pair fS1;S2g ¼ fS2;S1g has the
symmetry described by the group

J 12 ¼ F 12 [ j�12F 12; ð5:2:5:5Þ
where j�12 is an operation that exchanges S1 and S2, j

�
12S1 ¼ S2,

j�12S2 ¼ S1. Since for an unordered domain pair
fS1;S2g ¼ fS2;S1g, the symmetry operations of the left coset
j�12F 12 are also symmetry operations of the unordered domain
pair fS1;S2g. If such an operation j�12 and hence the whole coset
j�12F 12 of state-reversing operations exists, then the domain pair is
called transposable. Otherwise J 12 ¼ F 12 and the domain pair is
called non-transposable.

The sectional layer group of the space group J 12 can therefore
be generally written in the form

�JJ12 ¼bFF12 [ r�12bFF12 [ s12bFF12 [ t�12bFF1: ð5:2:5:6Þ
In the general case, the group �JJ12 contains three halving
subgroups which intersect at the subgroupbFF12 of index four: the
subgroup bJJ12 ¼bFF12 [ r�12bFF12 is the floating subgroup of �JJ12; the
coset r�12bFF12 is present if and only if the domain pair is transpo-

sable. The group �FF12 ¼bFF12 [ s12bFF12 is the sectional layer group for
the ordered domain pair defined above. Finally, the group
T12 ¼bFF12 [ t�12bFF12 is the symmetry group of the twin [see
(5.2.5.2)]. Notice that it is itself not a sectional layer group of
the space groups F 12 and J 12 involved unless T12 ¼bFF12, which
occurs in the case of a non-transposable domain pair and of a
general position of the central plane.

Since the cosets can be set-theoretically expressed as
differences of groups: r�12bFF12 ¼bJJ12 �bFF12 and s12bFF12 ¼ �FF12 �bFF12,
while T12 ¼ �JJ12 � ½r�12bFF12 [ s12bFF12�, we receive a compact set-
theoretical expression for the symmetry group of the twin in
terms of four sectional layer groups:

T12 ¼ �JJ12 � ½ðbJJ12 �bFF12Þ [ ð �FF12 �bFF12Þ�: ð5:2:5:7Þ

Thus the symmetry group T12 of the twin can be expressed in
terms of two sectional layer groups �FF12, �JJ12 and their floating
subgroupsbFF12,bJJ12, respectively. These four sectional layer groups
can be found in the scanning tables.

As an illustrative example, we consider below a domain twin
with a ferroelastic wall in the orthorhombic ferroelastic phase of
the calomel crystal Hg2Cl2. Original analysis which includes the
domain twin with antiphase boundary is given by Janovec &
Zikmund (1993). Another analysis performed prior to the scan-
ning tables is that of the domain twin in the KSCN crystal
(Janovec et al., 1989). Various cases of domain twins in fullerene
C60 have also been analysed with the use of scanning tables
(Janovec & Kopský, 1997; Saint-Grégoire, Janovec & Kopský,
1997).

Example: The parent phase of calomel has a tetragonal body-
centred structure of space-group symmetry I4=mmm (D17

4h),
where lattice points are occupied by calomel molecules which
have the form of Cl–Hg–Hg–Cl chains along the c axis. The
crystallographic coordinate system is defined by vectors of the
conventional tetragonal basis at ¼ aex, bt ¼ aey, ct ¼ cez with
reference to the Cartesian basis ðex; ey; ezÞ and the origin P is
chosen at the centre of gravity of one of the calomel molecules.
The parent structure projected onto the z ¼ 0 plane is depicted in
the middle of Fig. 5.2.5.5, where full and empty circles denote the
centres of gravity at the levels z ¼ 0 and z ¼ c=2, respectively.
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Fig. 5.2.5.5. The unit cell of the parent structure of calomel and the cells of
four ferroic domain states.
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The ferroic phase is orthorhombic with a space-group
symmetry of the type Cmcm (D17

2h), the conventional ortho-
rhombic cell is based on vectors a ¼ at � bt, b ¼ at þ bt, c ¼ ct
and contains two original cells. The conventional cell of the
original tetragonal structure S and the cells of the four single
domain states S1, S2, S3 and S4 are shaded in Fig. 5.2.5.5. The
arrows represent spontaneous shifts ðx; xÞ, ð�x; xÞ, ð�x;�xÞ and
ðx;�xÞ of gravity centres of molecules. The two single domain
states S1 and S3 have the symmetry Amam (at=2 or bt=2); the
other two single domain states S2 and S4 have the symmetry
Bbmm (at=2 or bt=2), where the Hermann–Mauguin symbols
refer to the orthorhombic basis. There are two classes of domain
pairs, represented by the pairs fS1;S2g and fS1;S3g, which result
in domain walls referred to as a ferroelastic domain wall and an

antiphase boundary, respectively. We shall consider the first of
these cases.

The two single domain states S1, S2 and the unordered pair
fS1;S2g are represented in Fig. 5.2.5.6. The symmetries of the
single domain states and of both the ordered and unordered pair
are given in Table 5.2.5.1, where subscripts indicate the orienta-
tion of symmetry elements with reference to the Cartesian basis
and an asterisk denotes operations that exchange the single
domain states.

We consider the domain walls of the orientation (100) with
reference to the original tetragonal basis ðat; bt; ctÞ. This is the
orientation with the Miller indices (110) with reference to the
orthorhombic basis ða; b; cÞ. Consulting the scanning table No.
136 for the group J 12 ¼ P4�2z=mznxym

�
x (bt=2), we find the scan-

ning group Bmymzmx (bt=2) with reference to its conventional
basis ða0 ¼ 2bt; b

0 ¼ ct; d ¼ 2atÞ, where a0 ¼ ð�aþ bÞ, b0 ¼ c,
d ¼ ðaþ bÞ. Applying the results of the scanning table with the
shift by bt=2 ¼ a0=4, we obtain the sectional layer groups �JJ12ð0dÞ
and �JJ12ð14 dÞ and their floating subgroup �JJ12ðsdÞ ¼bJJ12ðsdÞ (for
s 6¼ 0; 1

4). Analogously, for the space group F 12, we obtain
the sectional layer groups �FF12ð0dÞ and �FF12ð14 dÞ and their floating
subgroup �FF12ðsdÞ ¼bFF12ðsdÞ (for s 6¼ 0; 14). All these groups are
collected in the Table 5.2.5.2 in two notations. In this table, with a
specified basis, each standard symbol contains the same infor-
mation as the optional symbol. Optional symbols contain
subscripts which explicitly specify the orientations of symmetry
elements with reference to the Cartesian coordinate system
ðex; ey; ezÞ, asterisks and underlines have the meaning specified
above. The lattice symbol p means the common lattice
Tð2bt; ctÞ ¼ Tða0; b0Þ of all sectional layer groups and twin
symmetries. The Hermann–Mauguin symbols are written with
reference to the coordinate systems ðPþ sd; a0; b0; dÞ.

The twin symmetry T12ðsdÞ is determined by the relation
(5.2.5.7). This means, in practice, that we have to find the
groups �JJ12ðsdÞ, bJJ12ðsdÞ, �FF12ðsdÞ and bFF12ðsdÞ from which we
obtain the group T12ðsdÞ. If tables of subgroups of layer groups
were available, it would be sufficient to look up the subgroups
which lie between �JJ12ðsdÞ and bFF12ðsdÞ and recognize the three
groups �FF12ðsdÞ,bJJ12ðsdÞ and T12ðsdÞ.

Optional symbols facilitate this determination considerably. To
get the twin symmetry T12ðsdÞ, we look up the optional symbol for
the group �JJ12ðsdÞ and eliminate elements that are either only
underlined or that are only labelled by an asterisk. Or, vice versa,
we leave only those elements that are not labelled at all or that
are at the same time underlined and labelled by an asterisk. The
resulting twin symmetries are given in the lower part of Table
5.2.5.2.

The implications of this symmetry analysis on the structure of
domain walls at 0d and 1

4 d are illustrated in Fig. 5.2.5.7. Shaded
areas represent the domain states at infinity. The left-hand part of
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Fig. 5.2.5.6. The unordered domain pair between the two domain states.

Table 5.2.5.1. Symmetries of domain states and domain pairs in a calomel
crystal

All groups in this table are expressed by their Hermann–Mauguin symbols with
reference to orthorhombic basis a ¼ at � bt, b ¼ at þ bt , c ¼ ct .

Object Symmetry group Type

Parent phase G ¼ I4=mmm D17
4h

S1 F 1 ¼ Amx�yyaxymz (at=2 or bt=2) D17
2h

S2 F 2 ¼ Bbx�yymxymz (at=2 or bt=2) D17
2h

ðS1;S2Þ F 12 ¼ Pnx�yynxymz (at=2 or bt=2) D12
2h

fS1;S2g J 12 ¼ P4�2z=mznxym
�
x (bt=2) D14

4h ½D12
2h�

Table 5.2.5.2. Sectional layer groups of space groups F 12 and J 12 in the conventional basis ða0 ¼ 2bt; b
0 ¼ ct; d ¼ 2atÞ of the scanning group Bmymzmx and the

respective twin symmetries

Space group Plane ðhklÞ
Location Sectional layer group

sd LðsdÞ Standard symbol Optional symbol

F 12 ð110Þ 0d �FF12ð0dÞ p12=m1 (bt=2) p12z=mz1 (bt=2)
1
4 d

�FF12ð14 dÞ p12=m1 p12z=mz1

sd �FF12ðsdÞ ¼bFF12 p1m1 p1mz1

J 12 0d �JJ12ð0dÞ pmmm (bt=2) p2�y=m
�
y 2z=mz 2

�
x=m

�
x (bt=2)

1
4 d

�JJ12ð14 dÞ pmma p2�1y=m
�
y 2z=mz 2

�
x=a

�
x

sd �JJ12ðsdÞ ¼bJJ12 pmm2 pm�
ymz2

�
x

Twin symmetries Location T12ðsdÞ Symmetry of the twin

0d T12ð0dÞ p2mm p2�ymzm
�
x

1
4 d T12ð14 dÞ p21ma p2�1ymza

�
x

sd T12ðsdÞ p1m1 p1mz1
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the figure corresponds to the location of the central plane at 0d,
the right-hand part to the location at 1

4 d. The twin symmetries
T12ð0dÞ ¼ p2ymzmx and T12ð14 dÞ ¼ p21ymzax determine the rela-
tionship between the structures in the two half-spaces. The trivial
symmetry operations form the layer group p1mz1 in both cases
and leave invariant the structures in both half-spaces. The non-
trivial symmetry operations map the structure in one of the half-
spaces onto the structure in the other half-space and back. The
symmetry of the central plane is given by the groups �JJ12ð0dÞ and
�JJ12ð14 dÞ because the states S1 and S2 meet at this plane.
The arrows that represent the shift of calomel molecules in the

xy plane may rotate and change their amplitude as we approach
the central plane because the symmetry requirements are relaxed
to those imposed by the layer group p1mz1 consisting of trivial
symmetry operations of the twin. The non-trivial twin symmetries
determine the relationship between the structures in the two half-
spaces, so that the rotation and change of amplitude in these two
half-spaces are correlated. The symmetry of the central plane
requires, in the left-hand part of the figure, that the arrows at
black circles are aligned along the plane and that they are of the
same lengths and alternating direction. The arrows at the empty
circles in the right-hand part of the figure are nearly perpendi-
cular to the plane, of the same lengths and of alternating direction
in accordance with the central-plane symmetry. They are shown
in the figure as strictly perpendicular to the plane; however, slight
shifts of the atoms parallel to the plane can be expected because
the arrows mean that the atoms are actually already out of the
central plane.

Summary: In the analysis of domain twins, we know the
structures of the two domain states, in our case the orientation of
arrows, at infinity. In the example above, we considered two cases
in both of which the layer group �JJ12ðsodÞ contains all four types of
the twin operations – two types of symmetry operations and two
types of twin-reversing operations. In this case, we summarize the
results of the symmetry analysis as follows. (i) The floating layer
groupbFF12 determines the allowed changes of the structures on the
path from infinity (physically this means the domain bulk)
towards the central plane. (ii) Operations of the coset t�12bFF12

correlate the changes in the two half-spaces. (iii) The group
�JJ12ðsodÞ as the symmetry of the central plane where the two half-

spaces meet contains the twin symmetry T12ðsodÞ as its halving
subgroup and therefore imposes additional conditions on the
structure of the central plane in comparison with the conditions
in its vicinity.

As always, the symmetry determines only the character of
possible changes but neither their magnitude nor their depen-
dence on the distance from the central plane. Thus, in the
example considered, the symmetry arguments cannot predict the
detailed dependence of the angle of rotation on the distance from
the wall and they cannot predict whether and how the lengths of
these arrows change.
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Fig. 5.2.5.7. The structures and symmetries of domain twins in calomel corresponding to two different special positions of the wall.
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