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11. DATA PROCESSING

11.1. Automatic indexing of oscillation images

By M. G. ROSSMANN

11.1.1. Introduction

Auto-indexing routines have been used extensively for initiating
diffraction data collection with a single-point-detector device
(Sparks, 1976, 1982). These methods depend upon the precise
knowledge of the reciprocal-lattice vectors for a few selected
reflections. Greater difficulty has been encountered for automatic
indexing of oscillation images recorded on two-dimensional
detectors using randomly oriented crystals, as is frequently the
case for macromolecular crystal samples. In the past, the practice
was to orient crystals relative to the camera axes with an accuracy of
at least 1°. In this case, the indexing procedure required only
refinement of the crystal orientation matrix (Wonacott, 1977,
Rossmann, 1979). The ‘American method’ (Rossmann & Erickson,
1983), where crystals are oriented more or less randomly, is
currently used because of the need for optimizing available
synchrotron time and because of the deterioration in radiation-
sensitive crystals during the setting process.

A variety of techniques were suggested to determine the crystal
orientation, some of which required initial knowledge of the cell
dimensions (Vriend & Rossmann, 1987; Kabsch, 1988), while more
advanced techniques (Kim, 1989; Higashi, 1990; Kabsch, 1993)
determined both cell dimensions and crystal orientation. All these
methods start with the determination of the reciprocal-lattice
vectors assuming that the oscillation photographs are ‘stills’. The
methods of Higashi and Kabsch, as well as, in part, Kim’s, analyse
the distribution of the difference vectors generated from the
reciprocal-lattice vectors. The most frequent difference vectors
are taken as the basis vectors defining the reciprocal-lattice unit cell
and its orientation. In addition, Kim’s technique requires the input
of the orientation of a likely zone-axis direction onto which the
reciprocal-lattice vectors are then projected. The projections will
have a periodicity distribution consistent with the reciprocal-lattice
planes perpendicular to the zone axis. Duisenberg (1992) used a
similar approach for single-point-detector data, although he did not
rely on prior knowledge of the zone-axis direction. Instead, he
defined possible zone axes as being perpendicular to a reciprocal-
lattice plane by combining three, suitably chosen, reciprocal-lattice
points.

None of the above techniques were entirely satisfactory as they
sometimes failed to find a suitable crystal orientation matrix. A
major advance was made in the program DENZO, a part of the HKL
package (Otwinowski & Minor, 1997), which not only has a robust
indexing procedure but also has a useful graphical interface.
Unfortunately, the indexing technique used in the procedure has
never been described, except for a few hints in the manual on the
use of an FFT (fast Fourier transform). Indeed, Bricogne (1986)
suggested that a three-dimensional Fourier transformation might be
a powerful indexing tool, and Strouse (1996) developed such a
procedure for single-point-detector data. However, for large unit
cells this procedure requires an excessive amount of memory and
time (Campbell, 1997).

11.1.2. The crystal orientation matrix
The position X (x, y, z) of a reciprocal-lattice point can be given as
x = [P][A]h. (11.1.2.1)

The matrix [®] is a rotation matrix around the camera’s spindle axis
for a rotation of (. The vector h represents the Miller indices (%, k, [)
and [A] defines the reciprocal unit-cell dimensions and the
orientation of the crystal lattice with respect to the camera axes
when ¢ = 0. Thus,

a by ¢
Al=|a b <, (11.12.2)
a b, c

where a;, a; and a; are the components of the crystal a* axis with
respect to the orthogonal camera axes. When an oscillation image is
recorded, the position of a reciprocal-lattice point is moved from x;
to X,, corresponding to a rotation of the crystal from ¢ to ¢,. The
recorded position of the reflection on the detector corresponds to the
point x when it is on the Ewald sphere somewhere between x; and
xy. The actual value of ¢ at which this crossing occurs cannot be
retrieved from the oscillation image. We shall therefore assume
here, as is the case in all other procedures, that [®][A] defines the
crystal orientation in the centre of the oscillation range. Defining the
camera axes as in Rossmann (1979), it is easy to show that a
reflection recorded at the position (X, Y) on a flat detector normal to
the X-ray beam, at a distance D from the crystal, corresponds to

X
CAX2 4 Y24 D)
Y
AX2+ 12422
D
X2+ Y24 D)

y= (11.1.2.3)

where A is the X-ray wavelength.

If an approximate [A] matrix is available, the Miller indices of an
observed peak at (X, Y) can be roughly determined using (11.1.2.3)
and (11.1.2.1), where

h = [A]'[®] 'x, (11.1.2.4)
with the error being dependent upon the width of the oscillation

range, the error in the detector parameters and errors in determining
the coordinates of the centres of the recorded reflections.

11.1.3. Fourier analysis of the reciprocal-lattice vector
distribution when projected onto a chosen direction

If the members of a set of reciprocal-lattice planes perpendicular to
a chosen direction are well separated, then the projections of the
reciprocal-lattice vectors onto this direction will have an easily
recognizable periodic distribution (Fig. 11.1.3.1). Unlike the
procedure of Kim (1989), which requires the input of a likely
zone-axis direction, the present procedure tests all possible
directions and analyses the frequency distribution of the projected
reciprocal-lattice vectors in each case. Also, unlike the procedure of
Kim, the periodicity is determined using an FFT.
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Fig. 11.1.3.1. Frequency distribution of the projected reciprocal-lattice
vectors for a suitably chosen direction of a diffraction pattern from a
fibritin crystal (Tao et al., 1997). Reproduced with permission from
Steller et al. (1997). Copyright (1997) International Union of Crystal-
lography.

Let t represent a dimensionless unit vector of a chosen direction.
Then, the projection p of a reciprocal-lattice point x onto the chosen
vector t is given by

p=x-t. (11.1.3.1)

To apply a discrete FFT algorithm, all such projections of the
reciprocal-lattice points onto the chosen direction t are sampled in
small increments of p. For the given direction, the values of the
projections are in a range between the endpoints pui, and ppax. If
the maximum real cell dimension is assumed to be .y, then the
maximum number of reciprocal-lattice planes between the observed
limits of p iS ( pmax — Pmin)/(1/amax ). Hence, the number of useful
grid points along the direction t should be

M = ( Pmax = Pmin)Nlmax. (11.1.3.2)

where n represents the number of grid points between successive
reciprocal-lattice planes and is normally set to 5. Then, the
frequency f(p) in the range p < x-t < p+ Ap can be given as
F(p)Ap = f(}), where j is the closest integer to ( p — pmin)/Ap and
Ap = nam,x. Thus, the discrete Fourier transform of this frequency
distribution will be given by the summation

)= f(j)exp(2ikj). (11.1.3.3)
j=0

The transform is then calculated using a fast Fourier algorithm for
all integer values between O and m/2 (Fig. 11.1.3.2). The Fourier
coefficients that best represent the periodicity of the frequency
distribution will be large. The largest coefficient will occur at k =0
and correspond to the number of vectors used in establishing the
frequency distribution. The next set of large coefficients will
correspond to the periodicity that represents every reciprocal-lattice
plane. The ratio of this maximum to F(0) will be a measure of the
tightness of the frequency distribution around each lattice plane.
Subsequent maxima will be due to periodicities spanning every
second, third efc. frequency maximum and will thus be progres-
sively smaller (Fig. 11.1.3.2). The largest F(k) (when k = ), other
than F(0), will, therefore, correspond to an interval of d" between
reciprocal-lattice planes in the direction of t where d" = U(napy).

11.1.4. Exploring all possible directions to find a good set
of basis vectors

The polar coordinates v, ¢ will be used to define the direction t,
where 1) defines the angle between the X-ray beam and the chosen
direction t. The Fourier analysis is performed for each direction t in
the range 0 < ¢ < /2,0 < ¢ < 27. A suitable angular increment
in 1) was determined empirically to be about 0.03 rad (1.7°). For
each value of v, the increment in ¢ is taken to be the closest integral
value to (2 sin)/0.03. This procedure results in ~7300 separate,
roughly equally spaced, directions.

For each direction t, the distribution of the corresponding F(k)
coefficients is surveyed to locate the largest local maximum at k = I.
The ¢ and ¢ values associated with the 30 largest maxima are
selected for reﬁnement by a local search procedure to obtain an
accuracy of 107 rad (~0.006°). If the initial angular increment
(0.03 rad) used for the hemisphere search was reduced, then it
would not be necessary to refine quite as many local maxima.
However, to increase the efficiency of the search procedure, the
ratio of angular increments to the number of refined positions was
chosen to minimize the total computing time. The F' (/) values of the
refined positions are then sorted by size. Directions are chosen from
these vectors to give a linearly independent set of three basis vectors
of a primitive real-space unit cell. These are then converted to the
basis vectors of the reciprocal cell. The components of the three
reciprocal-cell axes along the three camera axes are the nine
components of the crystal orientation matrix [A] (11.1.2.2).

The final step in the selection of the best [A] matrix is to choose
various nonlinear combinations of the refined vectors that have the
biggest F(I) values. That set of three vectors which gives the best
indexing results is then chosen to represent the crystal orientation
matrix [A]. A useful criterion is to determine the nonintegral Miller
indices &' from (11.1.2.4) using the [A] matrix and the known
reciprocal-lattice vectors x. Any reflection for which any
component |h — h’'| is bigger than, say, 0.2 is rejected. The best
[A] matrix is chosen as the one with the least number of rejections.
In most cases, the best combination corresponds to taking the three
largest F () values.

The program goes on to determine a reduced cell from the cell
obtained by the above indexing procedure (Kim, 1989). The
reduced cell is then analysed in terms of the 44 lattice characters
(Burzlaff et al., 1992; Kabsch, 1993) in order to evaluate the most
likely Bravais lattice and crystal system.
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Fig. 11.1.3.2. Fourier analysis of the distribution shown in Fig. 11.1.3.1.
The first maximum, other than F(0), is at k = 27, corresponding to
(1/d*) =419 A and a value of F(27) = 97.0. Reproduced with
permission from Steller et al. (1997). Copyright (1997) International
Union of Crystallography.

210



11.1. AUTOMATIC INDEXING OF OSCILLATION IMAGES

11.1.5. The program

The auto-indexing program has been written in C and implemented
on an SGI O* workstation. It is a component of the general data-
processing system (DPS). The auto-indexing component of DPS is
available over the web, including the source code. The run-time for
auto-indexing is sufficiently short for the procedure to be run
interactively. The program described here is now included in the
MOSFLM data-processing package (Leslie, 1992).
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