International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 11.2, pp. 216-217   | 1 | 2 |

Section 11.2.6.7. Other benefits of profile fitting

A. G. W. Lesliea*

aMRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England
Correspondence e-mail: andrew@mrc-lmb.cam.ac.uk

11.2.6.7. Other benefits of profile fitting

| top | pdf |

11.2.6.7.1. Incompletely resolved spots

| top | pdf |

If adjacent spots are not fully resolved, there will be a systematic error in the integrated intensity which will be largest for weak spots that are adjacent to very strong spots. However, the profile-fitted intensity will be affected less than the summation integration intensity, because the peripheral pixels (where the influence of neighbouring spots is greatest) are down-weighted relative to the central pixels (where the neighbours will have least influence).

Further steps can be taken to minimize the errors caused by overlapping spots. Firstly, when forming the standard profiles, reflections are only included if they are significantly stronger than their nearest neighbours. This will minimize the errors in the standard profiles. Secondly, when evaluating the profile-fitted intensity of a particular reflection, pixels can be omitted if they are adjacent to a pixel that is part of a neighbouring spot (rather than having to be part of that spot).

11.2.6.7.2. Elimination of peak pixel outliers

| top | pdf |

In the same way that outliers in the background region can be identified and rejected (see Section 11.2.5.1.1[link]), it is possible in principle to identify outliers in the peak region of fully recorded reflections as those pixels whose deviation from the scaled standard profile is significantly greater than that expected from counting statistics. This approach works well if the feature that gives rise to the outliers affects only a small fraction of the peak pixels and gives rise to large deviations, and this is the case for some zingers or dead pixels, and for diffraction from small ice crystals when collecting data from cryo-cooled samples.

Another source of outliers is the encroachment of a strong neighbouring spot into the peak region, as discussed in Section 11.2.6.7.1[link]. When dealing with peripheral pixels, the outlier test can be applied to both fully recorded and partially recorded reflections, but a high σ cutoff (e.g. 10–20) must be used to avoid rejecting pixels that do not fit the profile simply because they correspond to a partially recorded spot.

11.2.6.7.3. Estimation of overloaded reflections

| top | pdf |

Owing to the limited dynamic range of current detectors, it is common for many low-resolution spots to contain saturated pixels. Providing the saturation level of the detector is known, such pixels can simply be excluded from the profile fitting, allowing a reasonable estimate of the true intensity (except when the majority of the pixels are saturated). A knowledge of the strong intensities is essential for structure solution based on molecular replacement techniques, and so this is a very useful additional feature of profile fitting.








































to end of page
to top of page