International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 12.2, pp. 256-262   | 1 | 2 |
https://doi.org/10.1107/97809553602060000680

Chapter 12.2. Locating heavy-atom sites

M. T. Stubbsa* and R. Huberb

a Institut für Pharmazeutische Chemie der Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany, and bMax-Planck-Institut für Biochemie, 82152 Martinsried, Germany
Correspondence e-mail:  stubbs@mailer.uni-marburg.de

References

First citation Adman, E. T., Stenkamp, R. E., Sieker, L. C. & Jensen, L. H. (1978). A crystallographic model for azurin at 3.0 Å resolution. J. Mol. Biol. 123, 35–47.Google Scholar
First citation Argos, P. & Rossmann, M. G. (1976). A method to determine heavy-atom positions for virus structures. Acta Cryst. B32, 2975–2983.Google Scholar
First citation Arnold, E., Vriend, G., Luo, M., Griffith, J. P., Kamer, G., Erickson, J. W., Johnson, J. E. & Rossmann, M. G. (1987). The structure determination of a common cold virus, human rhinovirus 14. Acta Cryst. A43, 346–361.Google Scholar
First citation Badger, J. & Athay, R. (1998). Automated and graphical methods for locating heavy-atom sites for isomorphous replacement and multiwavelength anomalous diffraction phase determination. J. Appl. Cryst. 31, 270–274.Google Scholar
First citation Blow, D. M. & Crick, F. H. C. (1959). The treatment of errors in the isomorphous replacement method. Acta Cryst. 12, 794–802.Google Scholar
First citation Budisa, N., Karnbrock, W., Steinbacher, S., Humm, A., Prade, L., Neuefeind, T., Moroder, L. & Huber, R. (1997). Bioincorporation of telluromethionine into proteins: a promising new approach for X-ray structure analysis of proteins. J. Mol. Biol. 270, 616–623.Google Scholar
First citation Buerger, M. J. (1959). Vector space. New York: Wiley.Google Scholar
First citation Chang, G. & Lewis, M. (1994). Using genetic algorithms for solving heavy-atom sites. Acta Cryst. D50, 667–674.Google Scholar
First citation Crick, F. H. C. & Magdoff, B. S. (1956). The theory of the method of isomorphous replacement for protein crystals. I. Acta Cryst. 9, 901–908.Google Scholar
First citation Dumas, P. (1994a). The heavy-atom problem: a statistical analysis. I. A priori determination of best scaling, level of substitution, lack of isomorphism and phasing power. Acta Cryst. A50, 526–537.Google Scholar
First citation Dumas, P. (1994b). The heavy-atom problem: a statistical analysis. II. Consequences of the a priori knowledge of the noise and heavy-atom powers and use of a correlation function for heavy-atom-site determination. Acta Cryst. A50, 537–546.Google Scholar
First citation Dumas, P. (1994c). The heavy-atom problem: a statistical analysis. II. Consequences of the a priori knowledge of the noise and heavy-atom powers and use of a correlation function for heavy-atom-site determination. Erratum. Acta Cryst. A50, 793.Google Scholar
First citation Green, D. W., Ingram, V. M. & Perutz, M. F. (1954). The structure of haemoglobin IV. Sign determination by the isomorphous replacement method. Proc. R. Soc. London Ser. A, 225, 287–307.Google Scholar
First citation Harker, D. (1956). The determination of the phases of the structure factors of non-centrosymmetric crystals by the method of double isomorphous replacement. Acta Cryst. 9, 1–9.Google Scholar
First citation Hendrickson, W. A., Horton, J. R. & LeMaster, D. M. (1990). Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672.Google Scholar
First citation Löwe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W. & Huber, R. (1995). Crystal structure of the 20S proteosome from the archaeon T. acidophilum at 3.4 Å resolution. Science, 268, 533–539.Google Scholar
First citation McRee, D. E. (1998). Practical protein crystallography. San Diego: Academic Press.Google Scholar
First citation Messerschmidt, A., Rossi, A., Ladenstein, R., Huber, R., Bolognesi, M., Gatti, G., Marchesini, A., Petruzzelli, R. & Finazzi-Agro, A. (1989). X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini. Analysis of the polypeptide fold and a model of the copper sites and ligands. J. Mol. Biol. 206, 513–529.Google Scholar
First citation Nar, H., Huber, R., Meining, W., Schmid, C., Weinkauf, S. & Bacher, A. (1995). Atomic structure of GTP cyclohydrolase I. Structure, 3, 459–466.Google Scholar
First citation Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M. & Canters, G. W. (1991). X-ray crystal structure of the two site-specific mutants His35Gln and His235Leu of azurin from Pseudomonas aeruginosa. J. Mol. Biol. 218, 427–447.Google Scholar
First citation Patterson, A. L. (1934). A Fourier series method for the determination of the components of interatomic distances in crystals. Phys. Rev. 46, 372–376.Google Scholar
First citation Perutz, M. F. (1956). Isomorphous replacement and phase determination in non-centrosymmetric space groups. Acta Cryst. 9, 867–873.Google Scholar
First citation Richardson, J. W. & Jacobson, R. A. (1987). In Patterson and Pattersons, edited by J. P. Glusker, B. K. Patterson & M. Rossi. Oxford University Press.Google Scholar
First citation Rogers, D. (1965). In Computing methods in crystallography, edited by J. S. Rollett, pp. 133–148. Oxford University Press.Google Scholar
First citation Romao, M. J., Turk, D., Gomis-Ruth, F. X., Huber, R., Schumacher, G., Mollering, H. & Russmann, L. (1992). Crystal structure analysis, refinement and enzymatic reaction mechanism of N-carbamoylsarcosine amidohydrolase from Arthrobacter sp. at 2.0 Å resolution. J. Mol. Biol. 226, 1111–1130.Google Scholar
First citation Rossmann, M. G. (1960). The accurate determination of the position and shape of heavy-atom replacement groups in proteins. Acta Cryst. 13, 221–226.Google Scholar
First citation Rossmann, M. G. (1972). Editor. The molecular replacement method. New York: Gordon and Breach. Google Scholar
First citation Rossmann, M. G., Arnold, E. & Vriend, G. (1986). Comparison of vector search and feedback methods for finding heavy-atom sites in isomorphous derivatives. Acta Cryst. A42, 325–334.Google Scholar
First citation Sheldrick, G. M. (1990). Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A46, 467–473.Google Scholar
First citation Sheldrick, G. M., Dauter, Z., Wilson, K. S., Hope, H. & Sieker, L. C. (1993). The application of direct methods and Patterson interpretation to high-resolution native protein data. Acta Cryst. D49, 18–23.Google Scholar
First citation Steigemann, W. (1991). Recent advances in the PROTEIN program system for the X-ray structure analysis of biological macromolecules. In Crystallographic computing 5: from chemistry to biology, edited by D. Moras, A. D. Podjarny & J. C. Thierry, pp. 115–125. Oxford University Press.Google Scholar
First citation Stubbs, M. T., Nar, H., Löwe, J. , Huber, R., Ladenstein, R., Spangfort, M. D. & Svensson, L. A. (1996). Locating a local symmetry axis from Patterson map cross vectors: application to crystal data from GroEL, GTP cyclohydrolase I and the proteosome. Acta Cryst. D52, 447–452.Google Scholar
First citation Stubbs, M. T., Summers, L., Mayr, I., Schneider, M., Bode, W., Huber, R., Ries, A. & Kühn, K. (1990). Crystals of the NC1 domain of type IV collagen. J. Mol. Biol. 211, 683–684.Google Scholar
First citation Terwilliger, T. C. & Berendzen, J. (1999). Automated MAD and MIR structure solution. Acta Cryst. D55, 849–861.Google Scholar
First citation Terwilliger, T. C. & Eisenberg, D. (1983). Unbiased three-dimensional refinement of heavy-atom parameters by correlation of origin-removed Patterson functions. Acta Cryst. A39, 813–817.Google Scholar
First citation Terwilliger, T. C. & Eisenberg, D. (1987). Isomorphous replacement: effects of errors on the phase probability distribution. Acta Cryst. A43, 6–13.Google Scholar
First citation Terwilliger, T. C., Kim, S.-H. & Eisenberg, D. (1987). Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Cryst. A43, 1–5.Google Scholar
First citation Tong, L. & Rossmann, M. G. (1993). Patterson-map interpretation with noncrystallographic symmetry. J. Appl. Cryst. 26, 15–21.Google Scholar
First citation Vagin, A. & Teplyakov, A. (1998). A translation-function approach for heavy-atom location in macromolecular crystallography. Acta Cryst. D54, 400–402.Google Scholar
First citation Wilson, A. J. C. (1949). The probability distribution of X-ray intensities. Acta Cryst. 2, 318–321.Google Scholar