International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 16.1, pp. 333-345   | 1 | 2 |
https://doi.org/10.1107/97809553602060000689

Chapter 16.1. Ab initio phasing

G. M. Sheldrick,c H. A. Hauptman,b C. M. Weeks,b* R. Millerb and I. Usóna

a Institut für Anorganisch Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany,bHauptman–Woodward Medical Research Institute, Inc., 73 High Street, Buffalo, NY 14203-1196, USA, and cLehrstuhl für Strukturchemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
Correspondence e-mail:  weeks@orion.hwi.buffalo.edu

References

First citation Anderson, D. H., Weiss, M. S. & Eisenberg, D. (1996). A challenging case for protein crystal structure determination: the mating pheromone Er-1 from Euplotes raikovi. Acta Cryst. D52, 469–480.Google Scholar
First citation Aree, T., Usón, I., Schulz, B., Reck, G., Hoier, H., Sheldrick, G. M. & Saenger, W. (1999). Variation of a theme: crystal structure with four octakis(2,3,6-tri-O-methyl)-gamma-cyclodextrin molecules hydrated differently by a total of 19.3 water. J. Am. Chem. Soc. 121, 3321–3327.Google Scholar
First citation Baggio, R., Woolfson, M. M., Declercq, J.-P. & Germain, G. (1978). On the application of phase relationships to complex structures. XVI. A random approach to structure determination. Acta Cryst. A34, 883–892.Google Scholar
First citation Beurskens, P. T. (1981). A statistical interpretation of rotation and translation functions in reciprocal space. Acta Cryst. A37, 426–430.Google Scholar
First citation Bhuiya, A. K. & Stanley, E. (1963). The refinement of atomic parameters by direct calculation of the minimum residual. Acta Cryst. 16, 981–984.Google Scholar
First citation Blessing, R. H. (1997). LOCSCL: a program to statistically optimize local scaling of single-isomorphous-replacement and single-wavelength-anomalous-scattering data. J. Appl. Cryst. 30, 176–177.Google Scholar
First citation Blessing, R. H., Guo, D. Y. & Langs, D. A. (1996). Statistical expectation value of the Debye–Waller factor and E(hkl) values for macromolecular crystals. Acta Cryst. D52, 257–266.Google Scholar
First citation Blessing, R. H. & Smith, G. D. (1999). Difference structure-factor normalization for heavy-atom or anomalous-scattering substructure determinations. J. Appl. Cryst. 32, 664–670.Google Scholar
First citation Bricogne, G. (1998). Bayesian statistical viewpoint on structure determination: basic concepts and examples. Methods Enzymol. 276, 361–423.Google Scholar
First citation Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). SIR88 – a direct-methods program for the automatic solution of crystal structures. J. Appl. Cryst. 22, 389–393.Google Scholar
First citation Chang, C.-S., Weeks, C. M., Miller, R. & Hauptman, H. A. (1997). Incorporating tangent refinement in the Shake-and-Bake formalism. Acta Cryst. A53, 436–444.Google Scholar
First citation Cochran, W. (1955). Relations between the phases of structure factors. Acta Cryst. 8, 473–478.Google Scholar
First citation Dauter, Z., Dauter, M., de La Fortelle, E., Bricogne, G. & Sheldrick, G. M. (1999). Can anomalous signal of sulfur become a tool for solving protein crystal structures? J. Mol. Biol. 289, 83–92.Google Scholar
First citation Dauter, Z., Sieker, L. C. & Wilson, K. S. (1992). Refinement of rubredoxin from Desulfovibrio vulgaris at 1.0 Å with and without restraints. Acta Cryst. B48, 42–59.Google Scholar
First citation Deacon, A. M. & Ealick, S. E. (1999). Selenium-based MAD phasing: setting the sites on larger structures. Structure, 7, R161–R166.Google Scholar
First citation Deacon, A. M., Weeks, C. M., Miller, R. & Ealick, S. E. (1998). The Shake-and-Bake structure determination of triclinic lysozyme. Proc. Natl Acad. Sci. USA, 95, 9284–9289.Google Scholar
First citation Debaerdemaeker, T., Tate, C. & Woolfson, M. M. (1985). On the application of phase relationships to complex structures. XXIV. The Sayre tangent formula. Acta Cryst. A41, 286–290.Google Scholar
First citation Debaerdemaeker, T. & Woolfson, M. M. (1983). On the application of phase relationships to complex structures. XXII. Techniques for random phase refinement. Acta Cryst. A39, 193–196.Google Scholar
First citation Debaerdemaeker, T. & Woolfson, M. M. (1989). On the application of phase relationships to complex structures. XXVIII. XMY as a random approach to the phase problem. Acta Cryst. A45, 349–353.Google Scholar
First citation DeTitta, G. T., Edmonds, J. W., Langs, D. A. & Hauptman, H. (1975). Use of the negative quartet cosine invariants as a phasing figure of merit: NQEST. Acta Cryst. A31, 472–479.Google Scholar
First citation DeTitta, G. T., Weeks, C. M., Thuman, P., Miller, R. & Hauptman, H. A. (1994). Structure solution by minimal-function phase refinement and Fourier filtering. I. Theoretical basis. Acta Cryst. A50, 203–210.Google Scholar
First citation Drendel, W. B., Dave, R. D. & Jain, S. (1995). Forced coalescence phasing: a method for ab initio determination of crystallographic phases. Proc. Natl Acad. Sci. USA, 92, 547–551.Google Scholar
First citation Drouin, M. (1998). Personal communication.Google Scholar
First citation Ekstrom, J. L., Mathews, I. I., Stanley, B. A., Pegg, A. E. & Ealick, S. E. (1999). The crystal structure of human S-adenosylmethionine decarboxylase at 2.25 Å resolution reveals a novel fold. Structure, 7, 583–595.Google Scholar
First citation Fan, H.-F. & Gu, Y.-X. (1985). Combining direct methods with isomorphous replacement or anomalous scattering data. III. The incorporation of partial structure information. Acta Cryst. A41, 280–284.Google Scholar
First citation Fan, H.-F., Han, F.-S. & Qian, J.-Z. (1984). Combining direct methods with isomorphous replacement or anomalous scattering data. II. The treatment of errors. Acta Cryst. A40, 495–498.Google Scholar
First citation Fan, H.-F., Hao, Q., Gu, Y.-X., Qian, J.-Z., Zheng, C.-D. & Ke, H. (1990). Combining direct methods with isomorphous replacement or anomalous scattering data. VII. Ab initio phasing of one-wavelength anomalous scattering data from a small protein. Acta Cryst. A46, 935–939.Google Scholar
First citation Fortier, S., Moore, N. J. & Fraser, M. E. (1985). A direct-methods solution to the phase problem in the single isomorphous replacement case: theoretical basis and initial applications. Acta Cryst. A41, 571–577.Google Scholar
First citation Frazão, C., Sieker, L., Sheldrick, G. M., Lamzin, V., LeGall, J. & Carrondo, M. A. (1999). Ab initio structure solution of a dimeric cytochrome c3 from Desulfovibrio gigas containing disulfide bridges. J. Biol. Inorg. Chem. 4, 162–165.Google Scholar
First citation Fujinaga, M. & Read, R. J. (1987). Experiences with a new translation-function program. J. Appl. Cryst. 20, 517–521.Google Scholar
First citation Germain, G., Main, P. & Woolfson, M. M. (1970). On the application of phase relationships to complex structures. II. Getting a good start. Acta Cryst. B26, 274–285.Google Scholar
First citation Germain, G. & Woolfson, M. M. (1968). On the application of phase relationships to complex structures. Acta Cryst. B24, 91–96.Google Scholar
First citation Gessler, K., Usón, I., Takaha, T., Krauss, N., Smith, S. M., Okada, S., Sheldrick, G. M. & Saenger, W. (1999). V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucoses. Proc. Natl Acad. Sci. USA, 96, 4246–4251.Google Scholar
First citation Giacovazzo, C. (1976). A probabilistic theory of the cosine invariant [\cos (\varphi_{\bf h} + \varphi_{\bf k} + \varphi_{\bf l} - \varphi_{{\bf h} + {\bf k} + {\bf l}})]. Acta Cryst. A32, 91–99.Google Scholar
First citation Giacovazzo, C. (2001). Direct methods. In International tables for crystallography, Vol. B. Reciprocal space, edited by U. Shmueli, ch. 2.2. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Giacovazzo, C. & Platas, J. G. (1995). The ab initio crystal structure solution of proteins by direct methods. IV. The use of the partial structure. Acta Cryst. A51, 398–404.Google Scholar
First citation Giacovazzo, C., Siliqi, D. & Platas, J. G. (1995). The ab initio crystal structure solution of proteins by direct methods. V. A new normalizing procedure. Acta Cryst. A51, 811–820.Google Scholar
First citation Giacovazzo, C., Siliqi, D., Platas, J. G., Hecht, H.-J., Zanotti, G. & York, B. (1996). The ab initio crystal structure solution of proteins by direct methods. VI. Complete phasing up to derivative resolution. Acta Cryst. D52, 813–825.Google Scholar
First citation Giacovazzo, C., Siliqi, D. & Ralph, A. (1994). The ab initio crystal structure solution of proteins by direct methods. I. Feasibility. Acta Cryst. A50, 503–510.Google Scholar
First citation Giacovazzo, C., Siliqi, D. & Spagna, R. (1994). The ab initio crystal structure solution of proteins by direct methods. II. The procedure and its first applications. Acta Cryst. A50, 609–621.Google Scholar
First citation Giacovazzo, C., Siliqi, D. & Zanotti, G. (1995). The ab initio crystal structure solution of proteins by direct methods. III. The phase extension process. Acta Cryst. A51, 177–188.Google Scholar
First citation Hauptman, H. (1974). On the theory and estimation of the cosine invariants [\cos (\varphi_{\bf l} + \varphi_{\bf m} + \varphi_{\bf n} + \varphi_{\bf p})]. Acta Cryst. A30, 822–829.Google Scholar
First citation Hauptman, H. (1975). A new method in the probabilistic theory of the structure invariants. Acta Cryst. A31, 680–687.Google Scholar
First citation Hauptman, H. (1982a). On integrating the techniques of direct methods and isomorphous replacement. I. The theoretical basis. Acta Cryst. A38, 289–294.Google Scholar
First citation Hauptman, H. (1982b). On integrating the techniques of direct methods with anomalous dispersion. I. The theoretical basis. Acta Cryst. A38, 632–641.Google Scholar
First citation Hauptman, H., Fisher, J., Hancock, H. & Norton, D. A. (1969). Phase determination for the estriol structure. Acta Cryst. B25, 811–814.Google Scholar
First citation Hauptman, H. A. (1991). A minimal principle in the phase problem. In Crystallographic computing 5: from chemistry to biology, edited by D. Moras, A. D. Podjarny & J. C. Thierry, pp. 324–332. Oxford: International Union of Crystallography and Oxford University Press.Google Scholar
First citation Hauptman, H. A. (1996). The SAS maximal principle: a new approach to the phase problem. Acta Cryst. A52, 490–496.Google Scholar
First citation Hauptman, H. A. & Karle, J. (1953). Solution of the phase problem. I. The centrosymmetric crystal. Am. Crystallogr. Assoc. Monograph No. 3. Dayton, Ohio: Polycrystal Book Service.Google Scholar
First citation Hauptman, H. A., Xu, H., Weeks, C. M. & Miller, R. (1999). Exponential Shake-and-Bake: theoretical basis and applications. Acta Cryst. A55, 891–900.Google Scholar
First citation Hendrickson, W. A. & Ogata, C. M. (1997). Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol. 276, 494–523.Google Scholar
First citation Hodel, A., Kim, S.-H. & Brünger, A. T. (1992). Model bias in macromolecular crystal structures. Acta Cryst. A48, 851–858.Google Scholar
First citation Hu, N.-H. & Liu, Y.-S. (1997). General expression for probabilistic estimation of multiphase structure invariants in the case of a native protein and multiple derivatives. Application to estimates of the three-phase structure invariants. Acta Cryst. A53, 161–167.Google Scholar
First citation Karle, I. L., Flippen-Anderson, J. L., Uma, K., Balaram, H. & Balaram, P. (1989). α-Helix and mixed 310/α-helix in cocrystallized conformers of Boc-Aib-Val-Aib-Aib-Val-Val-Val-Aib-Val-Aib-Ome. Proc. Natl Acad. Sci. USA, 86, 765–769.Google Scholar
First citation Karle, J. (1968). Partial structural information combined with the tangent formula for noncentrosymmetric crystals. Acta Cryst. B24, 182–186.Google Scholar
First citation Karle, J. & Hauptman, H. (1956). A theory of phase determination for the four types of non-centrosymmetric space groups 1P222, 2P22, 3P12, 3P22. Acta Cryst. 9, 635–651.Google Scholar
First citation Kinneging, A. J. & de Graaf, R. A. G. (1984). On the automatic extension of incomplete models by iterative Fourier calculation. J. Appl. Cryst. 17, 364–366.Google Scholar
First citation Kyriakidis, C. E., Peschar, R. & Schenk, H. (1996). The estimation of four-phase structure invariants using the single difference of isomorphous structure factors. Acta Cryst. A52, 77–87.Google Scholar
First citation Lamzin, V. S. & Wilson, K. S. (1993). Automatic refinement of protein models. Acta Cryst. D49, 129–147.Google Scholar
First citation Langs, D. A. (1988). Three-dimensional structure at 0.86 Å of the uncomplexed form of the transmembrane ion channel peptide gramicidin A. Science, 241, 188–191.Google Scholar
First citation Langs, D. A. (1993). Frequency statistical method for evaluating cosine invariants of three-phase relationships. Acta Cryst. A49, 545–557.Google Scholar
First citation Langs, D. A., Guo, D.-Y. & Hauptman, H. A. (1995). TDSIR phasing: direct use of phase-invariant distributions in macromolecular crystallography. Acta Cryst. A51, 535–542.Google Scholar
First citation Li, C., Kappock, T. J., Stubbe, J., Weaver, T. M. & Ealick, S. E. (1999). X-ray crystal structure of aminoimidazole ribonucleotide synthetase (PurM), from the Escherichia coli purine biosynthetic pathway at 2.5 Å resolution. Structure, 7, 1155–1166.Google Scholar
First citation Loll, P. J., Bevivino, A. E., Korty, B. D. & Axelsen, P. H. (1997). Simultaneous recognition of a carboxylate-containing ligand and an intramolecular surrogate ligand in the crystal structure of an asymmetric vancomycin dimer. J. Am. Chem. Soc. 119, 1516–1522.Google Scholar
First citation Loll, P. J., Miller, R., Weeks, C. M. & Axelsen, P. H. (1998). A ligand-mediated dimerization mode for vancomycin. Chem. Biol. 5, 293–298.Google Scholar
First citation McCourt, M. P., Ashraf, K., Miller, R., Weeks, C. M., Li, N., Pangborn, W. A. & Dorset, D. L. (1997). X-ray crystal structures of cytotoxic oxidized cholesterols: 7-ketocholesterol and 25-hydroxycholesterol. J. Lipid Res. 38, 1014–1021.Google Scholar
First citation McCourt, M. P., Li, N., Pangborn, W., Miller, R., Weeks, C. M. & Dorset, D. L. (1996). Crystallography of linear molecule binary solids. X-ray structure of a cholesteryl myristate/cholesteryl pentadecanoate solid solution. J. Phys. Chem. 100, 9842–9847.Google Scholar
First citation Main, P. (1976). Recent developments in the MULTAN system – the use of molecular structure. In Crystallographic computing techniques, edited by F. R. Ahmed, pp. 97–105. Copenhagen: Munksgaard.Google Scholar
First citation Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80: a system of computer programs for the automatic solution of crystal structures from X-ray diffraction data. Universities of York, England, and Louvain, Belgium.Google Scholar
First citation Mathiesen, R. H. & Mo, F. (1997). Application of known triplet phases in the crystallographic study of bovine pancreatic trypsin inhibitor. I: studies at 1.55 and 1.75 Å resolution. Acta Cryst. D53, 262–268.Google Scholar
First citation Mathiesen, R. H. & Mo, F. (1998). Application of known triplet phases in the crystallographic study of bovine pancreatic trypsin inhibitor. II: study at 2.0 Å resolution. Acta Cryst. D54, 237–242.Google Scholar
First citation Matthews, B. W. & Czerwinski, E. W. (1975). Local scaling: a method to reduce systematic errors in isomorphous replacement and anomalous scattering measurements. Acta Cryst. A31, 480–497.Google Scholar
First citation Miller, R., DeTitta, G. T., Jones, R., Langs, D. A., Weeks, C. M. & Hauptman, H. A. (1993). On the application of the minimal principle to solve unknown structures. Science, 259, 1430–1433.Google Scholar
First citation Miller, R., Gallo, S. M., Khalak, H. G. & Weeks, C. M. (1994). SnB: crystal structure determination via Shake-and-Bake. J. Appl. Cryst. 27, 613–621.Google Scholar
First citation Mukherjee, A. K., Helliwell, J. R. & Main, P. (1989). The use of MULTAN to locate the positions of anomalous scatterers. Acta Cryst. A45, 715–718.Google Scholar
First citation Parisini, E., Capozzi, F., Lubini, P., Lamzin, V., Luchinat, C. & Sheldrick, G. M. (1999). Ab initio solution and refinement of two high potential iron protein structures at atomic resolution. Acta Cryst. D55, 1773–1784.Google Scholar
First citation Pavelčík, F. (1994). Patterson-oriented automatic structure determination. Deconvolution techniques in space group P1. Acta Cryst. A50, 467–474.Google Scholar
First citation Perrakis, A., Sixma, T. K., Wilson, K. S. & Lamzin, V. S. (1997). wARP: improvement and extension of crystallographic phases by weighted averaging of multiple-refined dummy atomic models. Acta Cryst. D53, 448–455.Google Scholar
First citation Privé, G. G., Anderson, D. H., Wesson, L., Cascio, D. & Eisenberg, D. (1999). Packed protein bilayers in the 0.9 Å resolution structure of a designed alpha helical bundle. Protein Sci. 8, 1400–1409.Google Scholar
First citation Radfar, R., Shin, R., Sheldrick, G. M., Minor, W., Lovell, C. R., Odom, J. D., Dunlap, R. B. & Lebioda, L. (2000). The crystal structure of N10-formyltetrahydrofolate synthetase from Moorella thermoacetica. Biochemistry, 39, 3920–3926.Google Scholar
First citation Read, R. J. (1986). Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst. A42, 140–149.Google Scholar
First citation Refaat, L. S. & Woolfson, M. M. (1993). Direct-space methods in phase extension and phase determination. II. Developments of low-density elimination. Acta Cryst. D49, 367–371.Google Scholar
First citation Reibenspiess, J. (1998). Personal communication.Google Scholar
First citation Schäfer, M. (1998). Personal communication.Google Scholar
First citation Schäfer, M. & Prange, T. (1998). Personal communication.Google Scholar
First citation Schäfer, M., Schneider, T. R. & Sheldrick, G. M. (1996). Crystal structure of vancomycin. Structure, 4, 1509–1515.Google Scholar
First citation Schäfer, M., Sheldrick, G. M., Bahner, I. & Lackner, H. (1998). Crystal structures of actinomycin D and Z3. Angew. Chem. 37, 2381–2384.Google Scholar
First citation Schäfer, M., Sheldrick, G. M., Schneider, T. R. & Vértesy, L. (1998). Structure of balhimycin and its complex with solvent molecules. Acta Cryst. D54, 175–183.Google Scholar
First citation Schenk, H. (1974). On the use of negative quartets. Acta Cryst. A30, 477–481.Google Scholar
First citation Schneider, T. R. (1998). Personal communication.Google Scholar
First citation Schneider, T. R., Kärcher, J., Pohl, E., Lubini, P. & Sheldrick, G. M. (2000). Ab initio structure determination of the lantibiotic mersacidin. Acta Cryst. D56, 705–713.Google Scholar
First citation Sha, B.-D., Liu, S.-P., Gu, Y.-X., Fan, H.-F., Ke, H., Yao, J.-X. & Woolfson, M. M. (1995). Direct phasing of one-wavelength anomalous-scattering data of the protein core streptavidin. Acta Cryst. D51, 342–346.Google Scholar
First citation Sheldrick, G. M. (1982). Crystallographic algorithms for mini- and maxi-computers. In computational crystallography, edited by D. Sayre, pp. 506–514. Oxford: Clarendon Press.Google Scholar
First citation Sheldrick, G. M. (1990). Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A46, 467–473.Google Scholar
First citation Sheldrick, G. M. (1997). Direct methods based on real/reciprocal space iteration. In Proceedings of the CCP4 study weekend. Recent advances in phasing, edited by K. S. Wilson, G. Davies, A. S. Ashton, & S. Bailey, pp. 147–158. DL-CONF-97-001. Warrington: Daresbury Laboratory.Google Scholar
First citation Sheldrick, G. M. (1998). SHELX: applications to macromolecules. In Direct methods for solving macromolecular structures, edited by S. Fortier, pp. 401–411. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Sheldrick, G. M., Dauter, Z., Wilson, K. S., Hope, H. & Sieker, L. C. (1993). The application of direct methods and Patterson interpretation to high-resolution native protein data. Acta Cryst. D49, 18–23.Google Scholar
First citation Sheldrick, G. M. & Gould, R. O. (1995). Structure solution by iterative peaklist optimization and tangent expansion in space group P1. Acta Cryst. B51, 423–431.Google Scholar
First citation Shen, Q. (1998). Solving the phase problem using reference-beam X-ray diffraction. Phy. Rev. Lett. 80, 3268–3271.Google Scholar
First citation Shiono, M. & Woolfson, M. M. (1992). Direct-space methods in phase extension and phase determination. I. Low-density elimination. Acta Cryst. A48, 451–456.Google Scholar
First citation Shmueli, U. & Wilson, A. J. C. (2001). Statistical properties of the weighted reciprocal lattice. In International tables for crystallography, Vol. B. Reciprocal space, edited by U. Shmueli, ch. 2.1. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Sim, G. A. (1959). The distribution of phase angles for structures containing heavy atoms. II. A modification of the normal heavy-atom method for non-centrosymmetical structures. Acta Cryst. 12, 813–815.Google Scholar
First citation Smith, G. D., Blessing, R. H., Ealick, S. E., Fontecilla-Camps, J. C., Hauptman, H. A., Housset, D., Langs, D. A. & Miller, R. (1997). Ab initio structure determination and refinement of a scorpion protein toxin. Acta Cryst. D53, 551–557.Google Scholar
First citation Smith, G. D., Nagar, B., Rini, J. M., Hauptman, H. A. & Blessing, R. H. (1998). The use of SnB to determine an anomalous scattering substructure. Acta Cryst. D54, 799–804.Google Scholar
First citation Smith, J. L. (1998). Multiwavelength anomalous diffraction in macromolecular crystallography. In Direct methods for solving macromolecular structures, edited by S. Fortier, pp. 211–225. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Stec, B., Zhou, R. & Teeter, M. M. (1995). Full-matrix refinement of the protein crambin at 0.83 Å and 130 K. Acta Cryst. D51, 663–681.Google Scholar
First citation Teichert, M. (1998). Personal communication.Google Scholar
First citation Turner, M. A., Yuan, C.-S., Borchardt, R. T., Hershfield, M. S., Smith, G. D. & Howell, P. L. (1998). Structure determination of selenomethionyl S-adenosylhomocysteine hydrolase using data at a single wavelength. Nature Struct. Biol. 5, 369–375.Google Scholar
First citation Usón, I., Sheldrick, G. M., de La Fortelle, E., Bricogne, G., di Marco, S., Priestle, J. P., Grütter, M. G. & Mittl, P. R. E. (1999). The 1.2 Å crystal structure of hirustasin reveals the intrinsic flexibility of a family of highly disulphide bridged inhibitors. Structure, 7, 55–63.Google Scholar
First citation Vermin, W. J. & de Graaff, R. A. G. (1978). The use of Karle–Hauptman determinants in small-structure determinations. Acta Cryst. A34, 892–894.Google Scholar
First citation Walsh, M. A., Schneider, T. R., Sieker, L. C., Dauter, Z., Lamzin, V. S. & Wilson, K. S. (1998). Refinement of triclinic hen egg-white lysozyme at atomic resolution. Acta Cryst. D54, 522–546.Google Scholar
First citation Wang, B.-C. (1985). Solvent flattening. Methods Enzymol. 115, 90–112.Google Scholar
First citation Weckert, E. & Hümmer, K. (1997). Multiple-beam X-ray diffraction for physical determination of reflection phases and its applications. Acta Cryst. A53, 108–143.Google Scholar
First citation Weckert, E., Schwegle, W. & Hümmer, K. (1993). Direct phasing of macromolecular structures by three-beam diffraction. Proc. R. Soc. Lond. Ser. A, 442, 33–46.Google Scholar
First citation Weeks, C. M., DeTitta, G. T., Hauptman, H. A., Thuman, P. & Miller, R. (1994). Structure solution by minimal-function phase refinement and Fourier filtering. II. Implementation and applications. Acta Cryst. A50, 210–220.Google Scholar
First citation Weeks, C. M., DeTitta, G. T., Miller, R. & Hauptman, H. A. (1993). Applications of the minimal principle to peptide structures. Acta Cryst. D49, 179–181.Google Scholar
First citation Weeks, C. M., Hauptman, H. A., Chang, C.-S. & Miller, R. (1994). Structure determination by Shake-and-Bake with tangent refinement. ACA Trans. Symp. 30, 153–161.Google Scholar
First citation Weeks, C. M., Hauptman, H. A., Smith, G. D., Blessing, R. H., Teeter, M. M. & Miller, R. (1995). Crambin: a direct solution for a 400-atom structure. Acta Cryst. D51, 33–38.Google Scholar
First citation Weeks, C. M. & Miller, R. (1999a). The design and implementation of SnB version 2.0. J. Appl. Cryst. 32, 120–124.Google Scholar
First citation Weeks, C. M. & Miller, R. (1999b). Optimizing Shake-and-Bake for proteins. Acta Cryst. D55, 492–500.Google Scholar
First citation Weeks, C. M., Miller, R. & Hauptman, H. A. (1998). Extending the resolving power of Shake-and-Bake. In Direct methods for solving macromolecular structures, edited by S. Fortier, pp. 463–468. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation White, P. S. & Woolfson, M. M. (1975). The application of phase relationships to complex structures. VII. Magic integers. Acta Cryst. A31, 53–56.Google Scholar
First citation Wilson, K. S. (1978). The application of MULTAN to the analysis of isomorphous derivatives in protein crystallography. Acta Cryst. B34, 1599–1608.Google Scholar
First citation Yao, J.-X. (1981). On the application of phase relationships to complex structures. XVIII. RANTAN – random MULTAN. Acta Cryst. A37, 642–644.Google Scholar
First citation Zheng, X.-F., Fan, H.-F., Hao, Q., Dodd, F. E. & Hasnain, S. S. (1996). Direct method structure determination of the native azurin II protein using one-wavelength anomalous scattering data. Acta Cryst. D52, 937–941.Google Scholar