International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 16.1, p. 336   | 1 | 2 |

Section 16.1.5.3. Random omit maps

G. M. Sheldrick,c H. A. Hauptman,b C. M. Weeks,b* R. Millerb and I. Usóna

a Institut für Anorganisch Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany,bHauptman–Woodward Medical Research Institute, Inc., 73 High Street, Buffalo, NY 14203-1196, USA, and cLehrstuhl für Strukturchemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
Correspondence e-mail:  weeks@orion.hwi.buffalo.edu

16.1.5.3. Random omit maps

| top | pdf |

A third peak-picking strategy also involves selecting approximately [N_{u}] of the top peaks and eliminating some, but, in this case, the deleted peaks are chosen at random. Typically, one-third of the potential atoms are removed, and the remaining atoms are used to compute [E_{c}]. By analogy to the common practice in macromolecular crystallography of omitting part of a structure from a Fourier calculation in hopes of finding an improved position for the deleted fragment, this version of peak picking is described as making a random omit map. This procedure is a little faster than simply picking [N_{u}] atoms because fewer atoms are used in the structure-factor calculation. More important is the fact that, like iterative peaklist optimization, it has the potential for being a more efficient search algorithm.








































to end of page
to top of page