International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 16.1, p. 345   | 1 | 2 |

Section 16.1.9.3. Integration with multiple-beam diffraction

G. M. Sheldrick,c H. A. Hauptman,b C. M. Weeks,b* R. Millerb and I. Usóna

a Institut für Anorganisch Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany,bHauptman–Woodward Medical Research Institute, Inc., 73 High Street, Buffalo, NY 14203-1196, USA, and cLehrstuhl für Strukturchemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
Correspondence e-mail:  weeks@orion.hwi.buffalo.edu

16.1.9.3. Integration with multiple-beam diffraction

| top | pdf |

Recent experimental work in the field of multiple-beam diffraction provides grounds for hope that a generally applicable solution to the problem of obtaining individual invariant values can be found. It has been shown that triplet invariants can be measured for lysozyme with a mean error of approximately 20° (Weckert et al., 1993[link]; Weckert & Hümmer, 1997[link]). In addition, direct methods strengthened by simulated triplet invariants have been used to redetermine the structure of BPTI at resolutions as low as 2.0 Å (Mathiesen & Mo, 1997[link], 1998[link]). Currently, the one-at-a-time methods used to measure triplet phases seriously limit practical applications, but faster methods of data collection have been proposed (Shen, 1998[link]). If the means can, in fact, be found for measuring significant numbers of triplet phases quickly and accurately, dual-space direct methods may become routinely applicable to much lower resolution data than is currently possible.

References

First citation Anderson, D. H., Weiss, M. S. & Eisenberg, D. (1996). A challenging case for protein crystal structure determination: the mating pheromone Er-1 from Euplotes raikovi. Acta Cryst. D52, 469–480.Google Scholar
First citation Aree, T., Usón, I., Schulz, B., Reck, G., Hoier, H., Sheldrick, G. M. & Saenger, W. (1999). Variation of a theme: crystal structure with four octakis(2,3,6-tri-O-methyl)-gamma-cyclodextrin molecules hydrated differently by a total of 19.3 water. J. Am. Chem. Soc. 121, 3321–3327.Google Scholar
First citation Dauter, Z., Sieker, L. C. & Wilson, K. S. (1992). Refinement of rubredoxin from Desulfovibrio vulgaris at 1.0 Å with and without restraints. Acta Cryst. B48, 42–59.Google Scholar
First citation Deacon, A. M. & Ealick, S. E. (1999). Selenium-based MAD phasing: setting the sites on larger structures. Structure, 7, R161–R166.Google Scholar
First citation Deacon, A. M., Weeks, C. M., Miller, R. & Ealick, S. E. (1998). The Shake-and-Bake structure determination of triclinic lysozyme. Proc. Natl Acad. Sci. USA, 95, 9284–9289.Google Scholar
First citation Drouin, M. (1998). Personal communication.Google Scholar
First citation Ekstrom, J. L., Mathews, I. I., Stanley, B. A., Pegg, A. E. & Ealick, S. E. (1999). The crystal structure of human S-adenosylmethionine decarboxylase at 2.25 Å resolution reveals a novel fold. Structure, 7, 583–595.Google Scholar
First citation Frazão, C., Sieker, L., Sheldrick, G. M., Lamzin, V., LeGall, J. & Carrondo, M. A. (1999). Ab initio structure solution of a dimeric cytochrome c3 from Desulfovibrio gigas containing disulfide bridges. J. Biol. Inorg. Chem. 4, 162–165.Google Scholar
First citation Gessler, K., Usón, I., Takaha, T., Krauss, N., Smith, S. M., Okada, S., Sheldrick, G. M. & Saenger, W. (1999). V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucoses. Proc. Natl Acad. Sci. USA, 96, 4246–4251.Google Scholar
First citation Langs, D. A. (1988). Three-dimensional structure at 0.86 Å of the uncomplexed form of the transmembrane ion channel peptide gramicidin A. Science, 241, 188–191.Google Scholar
First citation Li, C., Kappock, T. J., Stubbe, J., Weaver, T. M. & Ealick, S. E. (1999). X-ray crystal structure of aminoimidazole ribonucleotide synthetase (PurM), from the Escherichia coli purine biosynthetic pathway at 2.5 Å resolution. Structure, 7, 1155–1166.Google Scholar
First citation Loll, P. J., Bevivino, A. E., Korty, B. D. & Axelsen, P. H. (1997). Simultaneous recognition of a carboxylate-containing ligand and an intramolecular surrogate ligand in the crystal structure of an asymmetric vancomycin dimer. J. Am. Chem. Soc. 119, 1516–1522.Google Scholar
First citation Loll, P. J., Miller, R., Weeks, C. M. & Axelsen, P. H. (1998). A ligand-mediated dimerization mode for vancomycin. Chem. Biol. 5, 293–298.Google Scholar
First citation Mathiesen, R. H. & Mo, F. (1997). Application of known triplet phases in the crystallographic study of bovine pancreatic trypsin inhibitor. I: studies at 1.55 and 1.75 Å resolution. Acta Cryst. D53, 262–268.Google Scholar
First citation Mathiesen, R. H. & Mo, F. (1998). Application of known triplet phases in the crystallographic study of bovine pancreatic trypsin inhibitor. II: study at 2.0 Å resolution. Acta Cryst. D54, 237–242.Google Scholar
First citation Parisini, E., Capozzi, F., Lubini, P., Lamzin, V., Luchinat, C. & Sheldrick, G. M. (1999). Ab initio solution and refinement of two high potential iron protein structures at atomic resolution. Acta Cryst. D55, 1773–1784.Google Scholar
First citation Privé, G. G., Anderson, D. H., Wesson, L., Cascio, D. & Eisenberg, D. (1999). Packed protein bilayers in the 0.9 Å resolution structure of a designed alpha helical bundle. Protein Sci. 8, 1400–1409.Google Scholar
First citation Radfar, R., Shin, R., Sheldrick, G. M., Minor, W., Lovell, C. R., Odom, J. D., Dunlap, R. B. & Lebioda, L. (2000). The crystal structure of N10-formyltetrahydrofolate synthetase from Moorella thermoacetica. Biochemistry, 39, 3920–3926.Google Scholar
First citation Reibenspiess, J. (1998). Personal communication.Google Scholar
First citation Schneider, T. R. (1998). Personal communication.Google Scholar
First citation Schneider, T. R., Kärcher, J., Pohl, E., Lubini, P. & Sheldrick, G. M. (2000). Ab initio structure determination of the lantibiotic mersacidin. Acta Cryst. D56, 705–713.Google Scholar
First citation Schäfer, M. (1998). Personal communication.Google Scholar
First citation Schäfer, M. & Prange, T. (1998). Personal communication.Google Scholar
First citation Schäfer, M., Schneider, T. R. & Sheldrick, G. M. (1996). Crystal structure of vancomycin. Structure, 4, 1509–1515.Google Scholar
First citation Schäfer, M., Sheldrick, G. M., Bahner, I. & Lackner, H. (1998). Crystal structures of actinomycin D and Z3. Angew. Chem. 37, 2381–2384.Google Scholar
First citation Schäfer, M., Sheldrick, G. M., Schneider, T. R. & Vértesy, L. (1998). Structure of balhimycin and its complex with solvent molecules. Acta Cryst. D54, 175–183.Google Scholar
First citation Shen, Q. (1998). Solving the phase problem using reference-beam X-ray diffraction. Phy. Rev. Lett. 80, 3268–3271.Google Scholar
First citation Sim, G. A. (1959). The distribution of phase angles for structures containing heavy atoms. II. A modification of the normal heavy-atom method for non-centrosymmetical structures. Acta Cryst. 12, 813–815.Google Scholar
First citation Smith, G. D., Blessing, R. H., Ealick, S. E., Fontecilla-Camps, J. C., Hauptman, H. A., Housset, D., Langs, D. A. & Miller, R. (1997). Ab initio structure determination and refinement of a scorpion protein toxin. Acta Cryst. D53, 551–557.Google Scholar
First citation Stec, B., Zhou, R. & Teeter, M. M. (1995). Full-matrix refinement of the protein crambin at 0.83 Å and 130 K. Acta Cryst. D51, 663–681.Google Scholar
First citation Teichert, M. (1998). Personal communication.Google Scholar
First citation Turner, M. A., Yuan, C.-S., Borchardt, R. T., Hershfield, M. S., Smith, G. D. & Howell, P. L. (1998). Structure determination of selenomethionyl S-adenosylhomocysteine hydrolase using data at a single wavelength. Nature Struct. Biol. 5, 369–375.Google Scholar
First citation Usón, I., Sheldrick, G. M., de La Fortelle, E., Bricogne, G., di Marco, S., Priestle, J. P., Grütter, M. G. & Mittl, P. R. E. (1999). The 1.2 Å crystal structure of hirustasin reveals the intrinsic flexibility of a family of highly disulphide bridged inhibitors. Structure, 7, 55–63.Google Scholar
First citation Walsh, M. A., Schneider, T. R., Sieker, L. C., Dauter, Z., Lamzin, V. S. & Wilson, K. S. (1998). Refinement of triclinic hen egg-white lysozyme at atomic resolution. Acta Cryst. D54, 522–546.Google Scholar
First citation Weckert, E. & Hümmer, K. (1997). Multiple-beam X-ray diffraction for physical determination of reflection phases and its applications. Acta Cryst. A53, 108–143.Google Scholar
First citation Weckert, E., Schwegle, W. & Hümmer, K. (1993). Direct phasing of macromolecular structures by three-beam diffraction. Proc. R. Soc. Lond. Ser. A, 442, 33–46.Google Scholar
First citation Weeks, C. M., Hauptman, H. A., Smith, G. D., Blessing, R. H., Teeter, M. M. & Miller, R. (1995). Crambin: a direct solution for a 400-atom structure. Acta Cryst. D51, 33–38.Google Scholar








































to end of page
to top of page