
18. REFINEMENT

18.1. Introduction to refinement

BY L. F. TEN EYCK AND K. D. WATENPAUGH

18.1.1. Overview

Methods of improving and assessing the accuracy of the positions of
atoms in crystals rely on the agreement between the observed and
calculated diffraction data. Calculation of diffraction data from an
atomic model depends on the theoretical model of scattering of
X-rays by crystals discussed in IT B (2001) Chapter 1.2. The
properties of the measured data are discussed in IT C (1999)
Chapters 2.2 and 7.1–7.5, and the mathematical basis of refinement
of structural parameters is discussed in IT C Chapters 8.1–8.5. This
chapter concentrates on the special features of macromolecular
crystallography.

18.1.2. Background

Macromolecular crystallography is not fundamentally different
from small-molecule crystallography, but is complicated by the
sheer size of the problems. Typical macromolecules contain
thousands of atoms and crystallize in unit cells of around a million
cubic ångstroms. The large size of the problems has meant that the
techniques applied to small molecules require too many computa-
tional resources to be directly applied to macromolecules. This has
produced a lag between macromolecular and small-molecule
practice beyond the limitations introduced by generally poorer
resolution. In essence, macromolecular refinement has followed
small-molecule crystallography. Additional complexity arises from
the book-keeping required to describe the macromolecular
structure, which is usually beyond the capabilities of programs
designed for small molecules.

Fitting the atom positions to the calculated electron-density maps
(Fourier maps) was a standard method until the introduction of
least-squares refinement technique in reciprocal space by Hughes
(1941). A less computationally intense method of calculating shifts
using difference Fourier maps (�F methods) was introduced by
Booth (1946a,b). By the early 1960s, digital computers were
becoming generally available and least-squares refinement methods
became the method of choice in refining small molecules. The
program ORFLS developed by Busing et al. (1962) was perhaps the
most extensively used. In the late 1960s, as protein structures were
being determined by multiple isomorphous replacement (MIR)
methods (see Part 12 and Chapter 2.4 in IT B), methods of
improving the structural models derived from the electron-density
maps were being studied. Diamond (1971) introduced the use of a
constrained chemical model in the fitting of a calculated electron-
density model to an MIR-derived electron-density map in a ‘real-
space refinement’ procedure. Diamond commented that phases
derived from a previous cycle of real-space fitting could be used to
calculate the next electron-density map, but this was not done.
Watenpaugh et al. (1972) first showed in 1971 that �F refinement
methods could be applied to both improve the model and extend the
phases from initial MIR or SIR (single isomorphous replacement)
experimental phases. Watenpaugh et al. (1973) also applied least-
squares techniques to the refinement of a protein structure for the
first time using a 1.54 Å resolution data set. Improvement of the
phases, clarification of the electron-density maps and interpretation
of unknown sequences in the structure were clearly evident,

although chemical restraints were not applied. The adaptation by
Hendrickson & Konnert of the restrained least-squares refinement
program developed by Konnert (Konnert, 1976; Hendrickson,
1985) became the first extensively used macromolecular refinement
program. At this time, refinement of protein models became
practical and nearly universal. Model refinement improved models
derived from structures determined by isomorphous replacement
methods and also provided the means to improve structural models
of related protein structures determined by molecular replacement
methods (see Part 13 and IT B Chapter 2.3).

By the 1980s, it became clear that additional statistical rigour in
macromolecular refinement was required. The first and most
obvious problem was that macromolecular structures were often
solved with fewer observations than there were parameters in the
model, which leads to overfitting. Recent advances include cross
validation for detection of overfitting of data (Brünger, 1992);
maximum-likelihood refinement for improved robustness (Pannu &
Read, 1996; Murshudov et al., 1997; Bricogne, 1997; Adams et al.,
1999); improved methods for describing the model with fewer
parameters (Rice & Brünger, 1994; Murshudov et al., 1999); and
incorporation of phase information from multiple sources (Pannu et
al., 1998). These improvements in the theory and practice of
macromolecular refinement will undoubtedly not be the last word
on the subject.

18.1.3. Objectives

A variety of methods are employed to improve the agreement
between observed and calculated macromolecular diffraction
patterns. Some of the more popular methods are discussed in the
different sections of this chapter. In part, the different methods arise
from focusing on different goals during different stages of model
refinement. Bias generated by incomplete models, and radius of
convergence, are important considerations at early stages of
refinement, because the models are usually incomplete, contain
significant errors in atom parameters and may carry errors from
misinterpretation of poorly phased electron-density maps. During
this stage of the process, the primary concern is to determine how
the model of the chain tracing and conformation of the residues
should be described. In later stages, after the description of the
model has been determined, the objective is to determine accurate
estimates of the values of the parameters which best explain the
observed data. These two stages of the problem have different
properties and should be treated differently.

18.1.4. Least squares and maximum likelihood

‘Improving the agreement’ between the observed and calculated
data can only be done if one first decides the criteria to be used to
measure the agreement. The most commonly used measure is the L2
norm of the residuals, which is simply the sum of the squares of the
differences between the observed and calculated data (IT C Chapter
8.1),

L2�x� � wi�yi � fi�x��� � ��
i

wi�yi � fi�x��2, �18�1�4�1�
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where wi is the weight of observation yi and fi�x� is the calculated
value of observation i given the parameters x. In essence, least-
squares refinement poses the problem as ‘Given these data, what are
the parameters of the model that give the minimum variance of the
observations?’. The L2 norm is strongly affected by the largest
deviations, which is not a desirable property in the early stages of
refinement where the model may be seriously incomplete. In the
early stages, it may be better to refine against the L1 norm,

L1 �
�

i
wi �yi � fi�x��� �,

the sum of the absolute value of the residuals. At present, this
technique is not used in macromolecular crystallography.

The observable quantity in crystallography is the diffracted
intensity of radiation. Fourier inversion of the model gives us a
complex structure factor. The phase information is normally lost in
the formulation of fi�x�. This is a root cause of some of the problems
of least-squares refinement from poor starting models. Many of the
problems of least-squares refinement can be addressed by changing
the measure of agreement from least squares to maximum
likelihood, which evaluates to the likelihood of the observations
given the model. In this formulation, the problem is posed as ‘Given
this model, what is the probability that the given set of data would
be observed?’. The model is adjusted to maximize the probability of
the given observations. This procedure is subtly different from least
squares in that it is reasonably straightforward to account for
incomplete models and errors in the model in computing the
probability of the observations. Maximum-likelihood refinement is
particularly useful for incomplete models because it produces
residuals that are less biased by the current model than those
produced by least squares. Maximum likelihood also provides a
rigorous formulation for all forms of error in both the model and the
observations, and allows incorporation of additional forms of prior
knowledge (like additional phase information) into the probability
distributions.

The likelihood of a model given a set of observations is the
product of the probabilities of all of the observations given the
model. If Pa�Fi; Fi� c� is the conditional probability distribution of
the structure factor Fi given the model structure factor Fi� c, then the
likelihood of the model is

L ��
i

Pa�Fi; Fi� c��

This is usually transformed into a more tractable form by taking the
logarithm,

log L ��
i

log Pa�Fi; Fi� c��

Since the logarithm increases monotonically with its argument, the
two versions of the equation have maxima at the same values of the
parameters of the model. This formulation is described in more
detail in Chapter 18.2, in IT C Section 8.2.1 and by Bricogne (1997),
Pannu & Read (1996), and Murshudov et al. (1997).

18.1.5. Optimization

Once the choice of criteria for agreement has been made, the next
step is to adjust the parameters of the model to minimize the
disagreement (or maximize the agreement) between the model and
the data. The literature on optimization in numerical analysis and
operations research, discussed in IT C Chapters 8.1–8.5, is very rich.
The methods can be characterized by their use of gradient
information (no gradients, first derivatives, or second derivatives),
by their search strategy (none, downhill, random, annealed, or a
combination of these), and by various performance measures on

different classes of problems. These will be discussed more fully in
Section 18.1.8.

18.1.6. Data

Resolution, accuracy, completeness and weighting of data all have
an impact on the refinement process. Small-molecule crystals
usually, but not always, diffract to well beyond atomic resolution.
Macromolecular crystals do not generally diffract to atomic
resolution. Macromolecular structures are by definition large,
which in turn means that the unit cells are large and the number
of diffracting unit cells per crystal is small when compared to small-
molecule crystals of similar size. Fortunately, the situation can be
partially offset with the use of the much more intense radiation
generated by synchrotrons (Part 8) and by improved data-collection
methods (Parts 7–11). Synchrotron-radiation sources designed to
produce intense beams of X-rays for the study of materials are
becoming much more readily available. As a consequence, both
higher resolution and statistically better data can be obtained.
Improvements in area-detector technology, protein purification,
cryocrystallography and data-integration software beneficially
influence the refinement process.

Refinement of crystal structures is a statistical process. There is
no substitute for adequate amounts of accurate, correctly weighted
data. Lower accuracy can be accommodated by increased amounts
of data and correct weighting. Unfortunately, determining the
correct weighting for macromolecular diffraction data is difficult.
Maximum-likelihood methods are more robust than least-squares
methods against improperly weighted data.

It has been clearly demonstrated that the best procedure for
refining small molecules is to include all of the observations as
integrated intensities, properly weighted, without preliminary
symmetry averaging. Inclusion of weak data and refinement on
diffracted intensity does not change the results very much, but has a
strong effect on the precision of the parameter estimates derived
from the refinement.

The long-standing debate as to whether refinement should be
against structure-factor amplitudes or diffracted intensity has been
resolved for small-molecule crystallography. Refinement against
intensity is preferred because it is closer to the experimentally
observed quantity, and the statistical weighting of the data is
superior to that obtained for structure-factor amplitudes. If the
model is correct and the data are reasonably good, the primary
distinction between the two approaches is in the standard
uncertainties of the derived parameters, which are usually some-
what better if the refinement is against diffracted intensity.

18.1.7. Models

Atomic resolution models are generally straightforward. A reason-
ably well phased diffraction pattern at atomic resolution shows the
location of each atom. The primary problem (which can be
substantial) is deciding how to model any disorder that may be
present. Structural chemistry is derived from the model. Macro-
molecular models generally have most of the structural chemistry
built in as part of the model. This approach is required as a direct
consequence of having too little data at too limited a resolution to
determine the positions of all of the atoms without using this
additional information.

There are two procedures for building structural chemistry into a
model. The first is to use known molecular geometry to reduce the
number of variables. For example, if the distance between two
atoms is held constant, the locus of possible positions for the second
atom is the surface of a sphere centred on the first atom. This means
that the position of the second atom can be specified given the
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position of the first atom and two variables to locate the point on the
sphere – a total of five variables instead of six. Every non-redundant
constraint reduces the number of degrees of freedom in the model
by one. If the second atom in this example were replaced by a group
of atoms with known geometry (e.g. a phenyl group containing six
atoms), the number of positional parameters could be reduced from
21 to eight. Constrained refinement is discussed extensively in IT C
Chapter 8.3.

The second procedure is to treat the additional information as
additional observations. A bond length is assumed to be an
observation, based on other crystal structures, which has a mean
value and a variance. This observation is added to the data instead of
being used to reduce the number of parameters in the model.

The two approaches have different consequences on the ratio of
observations to parameters. If we have No observations, Np
parameters and Nr non-redundant geometric features to add to the
problem, we have either C � No��Np � Nr� and dC�dNr� � �
C��Np � Nr� or C � �No 	 Nr��Np and dC�dNr� � � 1�Np, where
C is the ratio of observations to parameters. The former are
parameter constraints and the latter are parameter restraints.
Constraints are more effective at increasing the ratio of observations
to parameters, but since these features are built into the model, it is
difficult to evaluate how appropriate they actually are for the
problem at hand. Restraints provide an automatic evaluation of the
appropriateness of the assumed geometry to the current data,
because the deviations from the assumed values can be tested for
statistical significance.

The most common constraints and restraints applied to
macromolecular crystal structures are those which preserve or
reinforce the molecular geometry of the amino acid or nucleotide
residues (Chapter 18.3). Expected values for the geometry of these
structural fragments are available from the small-molecule crystal-
lographic literature and databases. A further step, which reduces the
parameter count substantially, is to treat parts of the molecule as a
set of linked rigid groups. This is particularly appropriate for
aromatic fragments such as the side chains of phenylalanine,
tyrosine, tryptophan and histidine, but can also be appropriate for
small groups like valine and threonine. The extreme form of this
approach is torsion-angle dynamics (Rice & Brünger, 1994), in
which the only variables are torsion angles about bonds, and the
position and orientation of the whole molecule. This description of
the model works well with the right kind of optimization procedure.

Positional restraints can be parameterized in a variety of ways.
For example, the geometry of three atoms can be treated as the three
distances involved or as two distances and the angle between them.
Several of the more popular restrained refinement programs treat
the parameters for bond distances, bond angles and planarity as
distances with a set of standard deviations. Others treat them as
bond distances, bond angles and torsion angles weighted by the
energy terms derived from experimental conditions. Different
methods of parameterization and weighing have different effects
on the refinement process, but to date these differences are not well
characterized. The primary effects should be on the approach to
convergence, as all of these formulations are normally satisfied by
correct structures.

Additional criteria can be added to the model besides simple
geometry. Preservation of bond lengths is usually done by adding
terms

�

bonded
atoms

1��2
ij

� �
dij � do

ij

� �2

to the objective function, where dij is the distance between atoms i
and j, do

ij is the ideal bond length, and �ij is the weight applied to the
bond. This is formally equivalent to treating bond stretching as a
spring. Additional energy parameters can be added, such as

electrostatic energy terms. Whatever vision of reality is applied to
the objective function becomes part of the model.

The atomic displacement factors (B factors) present a different
set of problems from the coordinates. The behaviour of these
parameters is strongly affected by coordinate errors, and in fact
large atomic displacement parameters are frequently used to
determine which parts of a structure are likely to contain errors.
The B factors are strongly related to the rate at which the diffraction
pattern diminishes with resolution and thus cannot be accurately
determined unless the diffraction pattern has been measured over a
sufficiently wide range of resolution to determine this rate. As a
practical matter, it is not feasible to refine individual atomic
displacement parameters at resolution less than about 2 Å, and they
frequently present problems even in atomic resolution small-
molecule structures. In high-resolution small-molecule structures,
B factors are frequently represented as anisotropic ellipsoids
described by six parameters per atom. In spite of the larger
displacements found in macromolecules relative to small mole-
cules, it is rarely possible to support the number of parameters
required to refine a structure with independent anisotropic
displacement factors. Nevertheless, the B factors of the atoms are
essential parts of the crystallographic model. Several methods for
reducing the number of independent B factors have been developed.
The simplest is group B factors, in which one parameter is refined
for all atoms in a particular group of atoms. Another method is to
apply a simple model to the change in displacement parameter
within a group of atoms. In this treatment, a B factor is refined for
one atom, say the C� atom of an amino-acid residue, and the
remainder of the atoms in the residue are assigned displacement
parameters that depend on their distance from the C� atom (Konnert
& Hendrickson, 1980). A third method is to enforce similarity of
displacement parameters based on the correlation coefficients
between pairs of displacement parameters in highly refined high-
resolution structures (Tronrud, 1996).

Small-molecule refinement programs also apply restraints to the
displacement parameters. The SIMU command of SHELX restrains
the axes of the anisotropic displacement parameters of bonded
atoms to be similar. This approach has been applied to a number of
very high resolution macromolecular refinements.

Large B factors do not represent large thermal motions of the
atom but rather a distribution of positions occupied by the atom over
time or in different unit cells of the crystal. The line between
describing atoms with large B factors as distributed about a single
point or several points (disordered atoms) is sometimes blurred. At
some point, the disorder can become resolved into alternative
positions or the atoms disappear from the observable electron
density. There are two kinds of disorder that can be easily modelled
if data are available to sufficient resolution:

(1) Static disorder describes the situation in which portions of the
structure have a small number of possible alternative conforma-
tions. The atoms in any given unit cell are in only one of the possible
conformations, but different cells may have different conforma-
tions. Since the diffraction experiment averages the structure over
all unit cells in the X-ray beam, the observations correspond to an
average structure in which each conformation is weighted according
to the fraction of the unit cells containing that conformation. The
normal bond-length and angle restraints apply to each conforma-
tion, and the fractional occupancy of all conformations should sum
to 1.0.

(2) Dynamic disorder describes the situation in which portions of
the structure are not in fixed positions. This form of disorder is
frequently encountered in amino-acid side chains on the molecular
surface. The electrons are spread over a sufficiently large volume
that the average electron density is very low and the atoms are
essentially invisible to X-rays. In such cases, the best model is to
simply omit the atoms from the diffraction calculation. They are
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commonly placed in the model in plausible positions according to
molecular geometry, but this can be misleading to people using the
coordinate set. If the atoms are included in the model, the atomic
displacement parameters generally become very large, and this may
be an acceptable flag for dynamic disorder. The hazard with this
procedure is that including these atoms in the model provides
additional parameters to conceal any error signal in the data that
might relate to problems elsewhere in the model.

At high resolution, it is sometimes possible to model the
correlated motion of atoms in rigid groups by a single tensor that
describes translation, libration and screw. This is rarely done for
macromolecules at present, but may be an extremely accurate way
to model the behaviour of the molecules. The recent development of
efficient anisotropic refinement methods for macromolecules by
Murshudov et al. (1999) will undoubtedly produce a great deal
more information about the modelling of dynamic disorder and
anisotropy in macromolecular structures.

Macromolecular crystals contain between 30 and 70% solvent,
mostly amorphous. The diffraction is not accurately modelled
unless this solvent is included (Tronrud, 1997). The bulk solvent is
generally modelled as a continuum of electron density with a high
atomic displacement parameter. The high displacement parameter
blurs the edges, so that the contribution of the bulk solvent to the
scattering is primarily at low resolution. Nevertheless, it is
important to include this in the model for two reasons. First, unless
the bulk solvent is modelled, the low-resolution structure factors
cannot be used in the refinement. This has the unfortunate effect of
rendering the refinement of all of the atomic displacement
parameters ill-determined. Second, omission or inaccurate phasing
of the low-resolution reflections tends to produce long-wavelength
variations in the electron-density maps, rendering them more
difficult to interpret. In some regions, the maps can become
overconnected, and in others they can become fragmented.

18.1.8. Optimization methods

Optimization methods for small molecules are straightforward, but
macromolecules present special problems due to their sheer size.
The large number of parameters vastly increases the volume of the
parameter space that must be searched for feasible solutions and
also increases the storage requirements for the optimization process.
The combination of a large number of parameters and a large
number of observations means that the computations at each cycle
of the optimization process are expensive.

Optimization methods can be roughly classified according to the
order of derivative information used in the algorithm. Methods that
use no derivatives find an optimum through a search strategy;
examples are Monte Carlo methods and some forms of simulated
annealing. First-order methods compute gradients, and hence can
always move in a direction that should reduce the objective
function. Second-order methods compute curvature, which allows
them to predict not only which direction will reduce the objective
function, but how that direction will change as the optimization
proceeds. The zero-order methods are generally very slow in high-
dimensional spaces because the volume that must be searched
becomes huge. First-order methods can be fast and compact, but
cannot determine whether or not the solution is a true minimum.
Second-order methods can detect null subspaces and singularities in
the solution, but the computational cost grows as the cube of the
number of parameters (or worse), and the storage requirements
grow as the square of the number of parameters – undesirable
properties where the number of parameters is of the order of 104.

Historically, the most successful optimization methods for
macromolecular structures have been first-order methods. This is
beginning to change as multi-gigabyte memories are becoming

more common on computers and processor speeds are in the
gigahertz range. At this time, there are no widely used refinement
programs that run effectively on multiprocessor systems, although
there are no theoretical barriers to writing such a program.

18.1.8.1. Solving the refinement equations

Methods for solving the refinement equations are described in IT
C Chapters 8.1 to 8.5 and in many texts. Prince (1994) provides an
excellent starting point. There are two commonly used approaches
to finding the set of parameters that minimizes equation (18.1.4.1).
The first is to treat each observation separately and rewrite each
term of (18.1.4.1) as

wi�yi � fi�x�� � wi

�N

j�1

�fi�x�
�xj

� �

�x0
j � xj�, �18�1�8�1�

where the summation is over the N parameters of the model. This is
simply the first-order expansion of fi�x� and expresses the
hypothesis that the calculated values should match the observed
values. The system of simultaneous observational equations can be
solved for the parameter shifts provided that there are at least as
many observations as there are parameters to be determined. When
the number of observational equations exceeds the number of
parameters, the least-squares solution is that which minimizes
(18.1.4.1). This is the method generally used for refining small-
molecule crystal structures, and increasingly for macromolecular
structures at atomic resolution.

18.1.8.2. Normal equations

In matrix form, the observational equations are written as

A� � r,

where A is the M by N matrix of derivatives, � is the parameter
shifts and r is the vector of residuals given on the left-hand sides of
equation (18.1.8.1). The normal equations are formed by multi-
plying both sides of the equation by AT . This produces an N by N
square system, the solution to which is the desired least-squares
solution for the parameter shifts.

AT A� � AT r or M� � b,

mij �
�M

k�1

wk
�fk�x�
�xi

� �
�fk�x�
�xj

� �

,

bi �
�M

k�1

wk�yk � fk�x�� �fk�x�
�xi

� �

�

Similar equations are obtained by expanding (18.1.4.1) as a second-
order Taylor series about the minimum x0 and differentiating.

��x� x0� 
 ��x0� 	
�

��

�xi

� �

x0

	
	
	
	
	
�x� x0�
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2

�

�x� x0�
	
	
	
	
	

�2�

�xi�xj

� �

x0

	
	
	
	
	
�x� x0�
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��

�x

� �




	
	
	
	
	

�2�

�xi�xj

� �

x0

	
	
	
	
	
�x� x0�




�

The second-order approximation is equivalent to assuming that the
matrix of second derivatives does not change and hence can be
computed at x instead of at x0.
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18.1.8.3. Choice of optimization method

First-order methods are generally the most economical for
macromolecular problems. The most general approach is to treat
the problem as a non-linear optimization problem from the
beginning. This strategy is used by TNT (Tronrud et al., 1987;
Tronrud, 1997) and by X-PLOR (Kuriyan et al., 1989), although by
very different methods.

TNT uses a preconditioned conjugate gradient procedure
(Tronrud, 1992), where the preconditioning function is the second
derivatives of the objective function with respect to each parameter.
In other words, at each step the parameters are normalized by the
curvature with respect to that parameter, and a normal conjugate
gradient step is taken. This has the effect that stiff parameters,
which have steep derivatives, are scaled down, while soft
parameters (such as B factors), which have small derivatives, are
scaled up. This greatly increases both the rate and radius of
convergence of the method.

X-PLOR (and its intellectual descendent, CNS) (Chapter 18.2 and
Section 25.2.3) uses a simulated annealing procedure that derives
sampling points by molecular dynamics. Simulated annealing is a
process by which the objective function is sampled at a new point in
parameter space. If the value of the objective function at the new
point is less than that at the current point, the new point becomes the
current point. If the value of the objective function is greater at the
new point than at the current point, the Boltzmann probability
exp���E�kT� of the difference in function values �E is compared
to a random number. If it is less than the random number, the new
point is accepted as the current point; otherwise it is rejected. This
process continues until a sufficiently deep minimum is found that
the sampling process never leaves that region of parameter space.
At this point the ‘temperature’ in the Boltzmann factor is reduced,
which lowers the probability that the current point will move out of
the region. This produces a finer search of the local region. The
cooling process is continued until the solution has been restricted to
a sufficiently small region. There are many variations of the strategy
that affect the rate of convergence and the completeness of
sampling. The primary virtue of simulated annealing is that it
does not become trapped in shallow local minima. Simulated
annealing can be either a zero-order method or a first-order method,
depending on the strategy used to generate new sampling points.
X-PLOR treats the fit to the diffraction data as an additional energy
term, and the gradient of that ‘energy’ is treated as a force. This
makes it a first-order method.

The first widely available macromolecular refinement program,
PROLSQ (Konnert, 1976), uses an approximation to the second-
order problem in which the matrix is greatly simplified. The
parameters for each atom are treated as a small block on the
diagonal of the matrix, and the off-diagonal blocks for pairs of
atoms related by geometric constraints are also filled in. The sparse
set of linear equations is then solved by an adaptation of the method
of conjugate gradients.

The most comprehensive refinement program available for
macromolecules is the same as the most comprehensive program
available for small molecules – SHELXL98 (Sheldrick, 1993; see
also Section 25.2.10). The primary adaptations to macromolecular
problems have been the addition of conjugate gradients as an
optimization method for cases in which the full matrix will not fit in
the available memory and facilities to process the polymeric models
required for macromolecules.

18.1.8.4. Singularity in refinement

Unless there are more linearly independent observations than
there are parameters to fit them, the system of normal equations has
no solution. The inverse of the matrix does not exist. Second-order
methods fail in these circumstances by doing the matrix equivalent

of dividing by zero. However, the objective function is still defined
and has a defined gradient at all points. First-order methods will find
a point at which the gradient is close to zero, and zero-order
methods will still find a minimum value for the objective function.
The difficulty is that the points so found are not unique. If one
computes the eigenvalues and eigenvectors of the matrix of normal
equations, one will find in this case that there are some eigenvalues
that are very small or zero. The eigenvectors corresponding to these
eigenvalues define sets of directions in which the parameters can be
moved without affecting the value of the objective function. This
region of the parameter space simply cannot be determined by the
available data. The only recourses are to modify the model so that it
has fewer parameters, add additional restraints to the problem, or
collect more data. The real hazard with this situation is that the
commonly used refinement methods do not detect the problem.
Careful use of cross validation and keeping careful count of the
parameters are the only remedy.

18.1.9. Evaluation of the model

Macromolecular model refinement is a cyclic process. No presently
known refinement algorithm can remove all the errors of chain
tracing, conformation, or misinterpretation of electron density.
Other methods must be interspersed with refinement to help remove
model errors. These errors are detected by basic sanity checks and
the use of common sense about the model. This topic is discussed
comprehensively in Part 21 and in Kleywegt (2000).

18.1.9.1. Examination of outliers in the model

Refinement-program output listings will normally provide some
information on atoms that are showing non-standard bond lengths,
bond angles or B factors. In addition, there is other software which
can help identify non-standard or unusual geometry, such as
PROCHECK (Laskowski et al., 1993) and WHAT IF (Vriend,
1990). These are very useful in identifying questionable regions of
structure but should not be completely relied on to identify errors or
how the molecular models may be improved. Overall, the
constraints in the model must be satisfied exactly, and the restraints
should have a statistically reasonable distribution of deviations from
the ideal values.

18.1.9.2. Examination of model electron density

Refinement of the model to improve the agreement between the
observed and calculated diffraction data and the associated
calculated phases should result in improved electron-density and
�F maps. Unexplained features in the electron-density map or
difference map are a clear indication that the model is not yet
complete or accurate. Careful examination of the Fourier maps is
essential. Interactive graphics programs such as XtalView (McRee,
1993) and O contain a number of analysis tools to aid in the
identification of errors in the models.

There are several different types of Fourier maps that can be
useful in the correction of the models. This topic is discussed
extensively in Chapter 15.2. Usual maps include Fo maps, �F maps
and �nFo � mFc� maps. The Fourier coefficients used to compute
the maps should be weighted by estimates of the degree of bias as
described in Chapter 15.2. While �F maps are very useful in
highlighting areas in the maps that reflect the greatest difference
between the Fo’s and Fc’s in Fourier space, they do not show the
electron density of the unit cell. Positive and negative regions of a
�F map may be the result of positional errors of an atom or group of
atoms, B-factor errors, completely misplaced atoms or missing
atoms. Fo maps show the electron density but are biased by the
current model. A �2Fo � Fc� map is a combination of an Fo map
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and a �F map which results in a map better showing the changes
due to errors. Some investigators prefer using further amplified �F
contributions by using a �3Fo � 2Fc� map or higher-order terms.

The contribution of the disordered solvent continuum has been
discussed previously. Macromolecular crystals also contain sig-
nificant quantities of discrete or partially discrete solvent molecules
(i.e. water). Care needs to be taken in adding solvent to a model.
Errors in models generate peaks in Fourier maps that can be
interpreted as solvent peaks. Hence, adding solvent peaks too early
in the refinement process may, in fact, lead to model errors.
Automatic water-adding programs are becoming more common;
examples include SHELXL98 and ARP/wARP (Lamzin & Wilson,
1997). These programs check if the waters are with in reasonable
bonding distances of hydrogen-bonding atoms. There is a
distribution of solvent molecules ranging from ones with low B
factors at unit occupancy to ones with very large B factors. Various
criteria are used to decide on a cutoff in the discrete solvent
contribution. A rule of thumb for ambient-temperature data sets is
frequently about one solvent molecule per residue in a protein
molecule. As more data are being collected at cryogenic
temperatures, this ratio is tending to go up. Noise is being fitted if
too many peaks in a �F map are being assigned as solvent
molecules. This can also contribute to reducing R factors on
incorrect models. Solvent sites may not be fully occupied. Because
of the large B factors and limited range of the diffraction data, the B
factors and occupancy are highly correlated. Refinement of
occupancy does not usually contribute either to improving a
model or to reduction of R factors in structures with up to 2.0 Å
resolution data. Beyond 1.5 Å data, it may be possible to refine
solvent water occupancies and B factors. At even higher resolution,
some programs, such as SHELXL98, provide anisotropic refinement

methods which may further improve the solvent model while
reducing R factors including Rfree.

18.1.9.3. R and Rfree

Cross validation is a powerful tool for avoiding over-interpreta-
tion of the data by a too elaborate model. The introduction of cross
validation to crystallography (Brünger, 1992) has been responsible
for significant improvement in the quality of structure determina-
tions. A subset of the reflections, chosen randomly, is segregated
and not used in the refinement. If the model is correct and the only
errors are statistical, these reflections should have an R factor close
to that of the reflections used in the refinement. Changes to the
model should affect both R and Rfree similarly. Kleywegt & Jones
(1997) have pointed out that it is necessary to treat the selection of
free reflections very carefully in the presence of noncrystallographic
symmetry.

18.1.10. Conclusion

It is always important to bear in mind that macromolecular crystal
structures are models intended to explain a particular set of
observations. Statistical measures can determine how well the
model explains the observations, but cannot say whether the model
is true or not. The distinction between precision and accuracy must
always be kept in mind. The objective should not be simply to
obtain the best fit of a model to the data, but, in addition, to find all
of the ways in which a model does not fit the data and correct them.
Until the day when all crystals diffract to atomic resolution, the
primary objective of refinement of the models will be to determine
just how well the structures are or are not determined.
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�LS, Luzz�r� � 1�33�Ni�p�1�2�R�sm��sm�, �18�5�8�3�
where R�sm� is the value of R at some value of s � sm on the
selected Luzzati curve. Equation (18.5.8.3) provides a means of
making a very rough statistical estimate of error for an atom with
B � Bavg (the average B for fully occupied sites) from a plot of R
versus 2 sin ���.

The corresponding equation involving Rfree is

�LS, Luzz�r� � 1�33�Ni�nobs�1�2�Rfree�sm��sm�� �18�5�8�4�

18.5.8.3. Comments on Luzzati plots

Protein structures always show a great range of B values. The
Luzzati theory effectively assumes that all atoms have the same B.

Nonetheless, the Luzzati method applied to high-angle data shells
does provide an upper limit for ��r� for the atoms with low B. It is
an upper limit since experimental errors and model imperfections
are not allowed for in the theory.

Low-resolution structures can be determined validly by using
restraints, even though the number of diffraction observations is less
than the number of atomic coordinates. The Luzzati method, based
preferably on Rfree, can be applied to the atoms of low B in such
structures. As the number of observations increases, and the
resolution improves, the Luzzati ��r� increasingly overestimates
the true ��r� of the low-B atoms.

In the use of Luzzati plots, the method of refinement, and its
degree of convergence, is irrelevant. A Luzzati plot is a statement
for the low-B atoms about the maximum errors associated with a
given structure, whether converged or not.

References

18.1

Adams, P. D., Pannu, N. S., Read, R. J. & Brunger, A. T. (1999).
Extending the limits of molecular replacement through combined
simulated annealing and maximum-likelihood refinement. Acta
Cryst. D55, 181–190.

Booth, A. D. (1946a). A differential Fourier method for refining
atomic parameters in crystal structure analysis. Trans. Faraday
Soc. 42, 444–448.

Booth, A. D. (1946b). The simultaneous differential refinement of co-
ordinates and phase angles in X-ray Fourier synthesis. Trans.
Faraday Soc. 42, 617–619.

Bricogne, G. (1997). Bayesian statistical viewpoint on structure
determination: basic concepts and examples. Methods Enzymol.
276, 361–423.
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