18. REFINEMENT

18.5.6. The diffraction-component precision index

18.5.6.1. Statistical expectation of error dependence

From general statistical theory, one would expect the s.u. of an atomic coordinate determined from the diffraction data alone to show dependence on four factors:

$$
\begin{equation*}
\sigma(x) \propto(\mathcal{R})\left[\left(n_{\text {atoms }}\right) /\left(n_{\text {obs }}-n_{\text {params }}\right)\right]^{1 / 2}\left(1 / s_{\mathrm{rms}}\right) \tag{18.5.6.1}
\end{equation*}
$$

Here, \mathcal{R} is some measure of the precision of the data; $n_{\text {atoms }}$ is the recognition that the information content of the data has to be shared out; $n_{\text {obs }}$ is the number of independent data, but to achieve the correct number of degrees of freedom this must be reduced by $n_{\text {params }}$, the number of parameters determined; and $1 / s_{\text {rms }}$ is a more specialized factor arising from the sensitivity $\partial|F| / \partial x$ of the data to the parameter x. Here s_{rms} is the r.m.s. reciprocal radius of the data. Any statistical error estimate must show some correspondence to these four factors.

18.5.6.2. A simple error formula

Cruickshank (1960) offered a simple order-of-magnitude formula for $\sigma(x)$ in small molecules. It was intended for use in experimental design: how many data of what precision are needed to achieve a given precision in the results? The formula, derived from a very rough estimate of a least-squares diagonal element in non-centrosymmetric space groups, was

$$
\begin{equation*}
\sigma\left(x_{i}\right)=(1 / 2)\left(N_{i} / p\right)^{1 / 2}\left[R / s_{\mathrm{rms}}\right] \tag{18.5.6.2}
\end{equation*}
$$

Here $p=n_{\text {obs }}-n_{\text {params }}, R$ is the usual residual $\sum|\Delta F| / \sum|F|$ and N_{i} is the number of atoms of type i needed to give scattering power at s_{rms} equal to that of the asymmetric unit of the structure, i.e., $\sum_{j} f_{j}^{2} \equiv N_{i} f_{i}^{2}$. [The formula has also proved very useful in a systematic study of coordinate precision in the many thousands of small-molecule structure analyses recorded in the Cambridge Structural Database (Allen et al., 1995a,b).]

For small molecules, the above definition of N_{i} allowed the treatment of different types of atom with not-too-different B 's. However, it is not suitable for individual atoms in proteins where there is a very large range of B values and some atoms have B 's so large as to possess negligible scattering power at $s_{\text {rms }}$.

Often, as in isotropic refinement, $n_{\text {params }} \simeq 4 n_{\text {atoms }}$, where $n_{\text {atoms }}$ is the total number of atoms in the asymmetric unit. For fully anisotropic refinement, $n_{\text {params }} \simeq 9 n_{\text {atoms }}$.

A first very rough extension of (18.5.6.2) for application in proteins to an atom with $B=B_{i}$ is

$$
\begin{equation*}
\sigma\left(x_{i}\right)=k\left(N_{i} / p\right)^{1 / 2}\left[g\left(B_{i}\right) / g\left(B_{\mathrm{avg}}\right)\right] C^{-1 / 3} R d_{\min } \tag{18.5.6.3}
\end{equation*}
$$

where k is about $1.0, N_{i}=\sum Z_{j}^{2} / Z_{i}^{2}, B_{\text {avg }}$ is the average B for fully occupied sites and C is the fractional completeness of the data to $d_{\text {min }}$. In deriving (18.5.6.3) from (18.5.6.2), $1 / s_{\text {rms }}$ has been replaced by $1.3 d_{\min }$, and the factor $(1 / 2)(1.3)=0.65$ has been increased to 1.0 as a measure of caution in the replacement of a full matrix by a diagonal approximation. $g(B)=1+a_{1} B+a_{2} B^{2}$ is an empirical function to allow for the dependence of $\sigma(x)$ on B. However, the results in Section 18.5.4.2 showed that the parameters a_{1} and a_{2} depend on the structure.

As also mentioned in Section 18.5.4.2, Sheldrick has found that the Z_{i} in N_{i} is better replaced by $Z_{i}^{\#}$, the scattering factor at $\sin \theta / \lambda=0.3 \AA^{-1}$. Hence, N_{i} may be taken as

$$
\begin{equation*}
N_{i}=\left(\sum Z_{j}^{\# 2} / Z_{i}^{\# 2}\right) \tag{18.5.6.4}
\end{equation*}
$$

A useful comparison of the relative precision of different structures may be obtained by comparing atoms with the respective $B=B_{\text {avg }}$ in the different structures. (18.5.6.3) then reduces to

$$
\begin{equation*}
\sigma\left(x, B_{\text {avg }}\right)=1.0\left(N_{i} / p\right)^{1 / 2} C^{-1 / 3} R d_{\min } \tag{18.5.6.5}
\end{equation*}
$$

The smaller the $d_{\min }$ and the R, the better the precision of the structure. If the difference between oxygen, nitrogen and carbon atoms is ignored, N_{i} may be taken simply as the number of fully occupied sites. For heavy atoms, (18.5.6.4) must be used for N_{i}.

Equation (18.5.6.5) is not to be regarded as having absolute validity. It is a quick and rough guide for the diffraction-data-only error component for an atom with Debye B equal to the $B_{\text {avg }}$ for the structure. It is named the diffraction-component precision index, or DPI. It contains none of the restraint data.

18.5.6.3. Extension for low-resolution structures and use of $R_{\text {free }}$

For low-resolution structures, the number of parameters may exceed the number of diffraction data. In (18.5.6.3) and (18.5.6.5), $p=n_{\mathrm{obs}}-n_{\text {params }}$ is then negative, so that $\sigma(x)$ is imaginary. This difficulty can be circumvented empirically by replacing p with n_{obs} and R with $R_{\text {free }}$ (Brünger, 1992). The counterpart of the DPI (18.5.6.5) is then

$$
\begin{equation*}
\sigma\left(x, B_{\text {avg }}\right)=1.0\left(N_{i} / n_{\mathrm{obs}}\right)^{1 / 2} C^{-1 / 3} R_{\text {free }} d_{\text {min }} \tag{18.5.6.6}
\end{equation*}
$$

Here $n_{\text {obs }}$ is the number of reflections included in the refinement, not the number in the $R_{\text {free }}$ set.

It may be asked: how can there be any estimate for the precision of a coordinate from the diffraction data only when there are insufficient diffraction data to determine the structure? By following the line of argument of Cruickshank's (1960) analysis, (18.5.6.6) is a rough estimate of the square root of the reciprocal of one diagonal element of the diffraction-only least-squares matrix. All the other parameters can be regarded as having been determined from a diffraction-plus-restraints matrix.

Clearly, (18.5.6.6) can also be used as a general alternative to (18.5.6.5) as a DPI, irrespective of whether the number of degrees of freedom $p=n_{\text {obs }}-n_{\text {params }}$ is positive or negative.

Comment. When p is positive, (18.5.6.6) would be exactly equivalent to (18.5.6.5) only if $R_{\text {free }}=R\left[n_{\text {obs }} /\left(n_{\text {obs }}-n_{\text {params }}\right)\right]^{1 / 2}$. Tickle et al. (1998b) have shown that the expected relationship in a restrained refinement is actually

$$
\begin{equation*}
R_{\text {free }}=R\left\{\left[n_{\mathrm{obs}}+\left(n_{\text {params }}-h\right)\right] /\left[n_{\mathrm{obs}}-\left(n_{\text {params }}-h\right)\right]\right\}^{1 / 2}, \tag{18.5.6.7}
\end{equation*}
$$

where $h=n_{\text {restraints }}-\sum w_{\text {geom }}(\Delta Q)^{2}$, the latter term, as in (18.5.3.1), being the weighted sum of the squares of the restraint residuals.

18.5.6.4. Position error

Often an estimate of a position error $|\Delta \mathbf{r}|$, rather than a coordinate error $|\Delta x|$, is required. In the isotropic approximation,

$$
\begin{equation*}
\sigma\left(r, B_{\text {avg }}\right)=3^{1 / 2} \sigma\left(x, B_{\text {avg }}\right) \tag{18.5.6.8}
\end{equation*}
$$

Consequently, the DPI formulae for the position errors are

$$
\begin{equation*}
\sigma\left(r, B_{\text {avg }}\right)=3^{1 / 2}\left(N_{i} / p\right)^{1 / 2} C^{-1 / 3} R d_{\min } \tag{18.5.6.9}
\end{equation*}
$$

with R and

$$
\begin{equation*}
\sigma\left(r, B_{\text {avg }}\right)=3^{1 / 2}\left(N_{i} / n_{\text {obs }}\right)^{1 / 2} C^{-1 / 3} R_{\text {free }} d_{\text {min }} \tag{18.5.6.10}
\end{equation*}
$$

with $R_{\text {free }}$.

