International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 19.3, p. 437   | 1 | 2 |

Section 19.3.3.4.3. Protein-folding studies

H. Tsurutaa and J. E. Johnsonb*

a SSRL/SLAC & Department of Chemistry, Stanford University, PO Box 4349, MS69, Stanford, California 94309-0210, USA, and bDepartment of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
Correspondence e-mail:  jackj@scripps.edu

19.3.3.4.3. Protein-folding studies

| top | pdf |

There have been a number of solution X-ray scattering studies on protein folding in recent years, in which proteins of low molecular weight had to be investigated under low electron-density contrast due to the presence of denaturing agents, such as urea, at high concentration. Solution X-ray scattering complements other structural techniques used in protein-folding studies, as this is the only technique available for learning how compact a protein is in solution. A Kratky plot of solution scattering data serves as a quick means of determining whether a protein is folded or unfolded. Recently, the singular value decomposition method was applied to this class of problems and revealed a folding intermediate of lysozyme (Chen et al., 1996[link]). This study has recently been expanded to a time-resolved study, which revealed a compact folding intermediate that has not yet formed a hydrophobic core (Chen et al., 1998[link]). Similar studies are being carried out on other protein systems. Arai et al. (1998)[link] reported that β-lactoglobulin undergoes a similar folding pattern while it forms a folding intermediate with a hydrophobic core within 100 ms. Uversky et al. (1998)[link] reported association-induced folding of globular proteins. Pollack et al. (1999)[link] developed a micro-machined mixer to study folding of cytochrome c in the sub-millisecond regime.

References

First citation Arai, M., Ikura, T., Semisotnov, G. V., Kihara, H., Amemiya, Y. & Kuwajima, K. (1998). Kinetic refolding of β-lactoglobulin. Studies by synchrotron X-ray scattering, and circular dichroism, absorption and fluorescence spectroscopy. J. Mol. Biol. 275, 149–162.Google Scholar
First citation Chacón, P., Morán, F., Díaz, J. F., Pantos, E. & Andreu, J. M. (1998). Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophys. J. 74, 2760–2775.Google Scholar
First citation Chen, L., Hodgson, K. O. & Doniach, S. (1996). A lysozyme folding intermediate revealed by solution X-ray scattering. J. Mol. Biol. 261, 658–671.Google Scholar
First citation Chen, L., Wildegger, G., Kiefhaber, T., Hodgson, K. O. & Doniach, S. (1998). Kinetics of lysozyme refolding: structural characterization of a non-specifically collapsed state using time-resolved X-ray scattering. J. Mol. Biol. 276, 225–237.Google Scholar
First citation Glatter, O. (2004). X-ray techniques. In International tables for crystallography, Vol. C. Mathematical, physical and chemical tables, edited by E. Prince, Section 2.6.1. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Inouye, H., Tsuruta, H., Sedzik, J., Uyemura, K. & Kirschner, D. A. (1999). Tetrameric assembly of full-sequence protein zero myelin glycoprotein by synchrotron X-ray scattering. Biophys. J. 76, 423–437.Google Scholar
First citation Koch, M. H. J. (1988). Instruments and methods for small-angle scattering with synchrotron radiation. Makromol. Chem. Macromol. Symp. 15, 79–90.Google Scholar
First citation Koch, M. H. J. & Svergun, D. I. (1992). Unpublished result.Google Scholar
First citation Kozin, M. B., Volkov, V. V. & Svergun, D. I. (1997). ASSA, a program for three-dimensional rendering in solution scattering from biopolymers. J. Appl. Cryst. 30, 811–815.Google Scholar
First citation Pollack, L., Tate, M. W., Darnton, N. C., Knight, J. B., Gruner, S. M., Eaton, W. A. & Austin, R. H. (1999). Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle X-ray scattering. Proc. Natl Acad. Sci. USA, 96, 10115–10117.Google Scholar
First citation Svergun, D. I. (1992). Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 25, 495–503.Google Scholar
First citation Svergun, D. I. (1999). Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886.Google Scholar
First citation Svergun, D. I., Barberato, C. & Koch, M. H. J. (1995). CRYSOL – a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 28, 768–773.Google Scholar
First citation Svergun, D. I., Volkov, V. V., Kozin, M. B., Stuhrmann, H. B., Barberato, C. & Koch, M. H. J. (1997). Shape determination from solution scattering of biopolymers. J. Appl. Cryst. 30, 798–802.Google Scholar
First citation Uversky, V. N., Segel, D. J., Doniach, S. & Fink, A. L. (1998). Association-induced folding of globular proteins. Proc. Natl Acad. Sci. USA, 95, 5480–5483.Google Scholar
First citation Yamashita, M. M., Almassy, R. J., Janson, C. A., Cascio, D. & Eisenberg, D. (1989). Refined atomic model of glutamine synthetase at 3.5 Å resolution. J. Biol. Chem. 264, 17681–17690.Google Scholar








































to end of page
to top of page