International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 19.4, p. 443   | 1 | 2 |

Section 19.4.6. Examples

D. M. Engelmana* and P. B. Mooreb

aDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA, and  bDepartments of Chemistry and Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
Correspondence e-mail:  don@paradigm.csb.yale.edu

19.4.6. Examples

| top | pdf |

19.4.6.1. Contrast variation

| top | pdf |

An early result that changed ideas about nucleosome organization came from measurements relying on the difference in protein and DNA densities (Baldwin et al., 1975[link]; Bradbury et al., 1976[link]). Information on the organization of serum lipoproteins was also based on intrinsic scattering differences (Stuhrmann et al., 1975[link]; Atkinson & Shipley, 1984[link]). The contrast between RNA and protein was used in early ribosome measurements (Crichton et al., 1977[link]; Moore et al., 1974[link]). Recent examples include detergent binding to membrane proteins (Timmins et al., 1991[link]) and the study of membrane protein–lipid complexes (Jeanteur et al., 1994[link]). Elegant use of contrast variation resulted in a structural explanation of the anti-cooperative binding of tRNA to synthetase, which had resisted study by other methods (Dessen et al., 1978[link]).

19.4.6.2. Contrast matching

| top | pdf |

In some applications, use has been made of contrast matching a large part of a complex to study a component with a contrasting scattering density. Examples include studies of ribosomal proteins in situ (Nierhaus et al., 1983[link]; Nowotny et al., 1994[link]), proteins of the DNA-dependant RNA polymerase (Stöckel et al., 1980a[link]), studies of muscle proteins (Stone et al., 1998[link]) and a view of a membrane protein in a lipid bilayer (Hunt et al., 1997[link]).

19.4.6.3. Spin contrast variation

| top | pdf |

Some applications of the spin contrast variation method have appeared (Junemann et al., 1998[link]; Nierhaus et al., 1998[link]).

19.4.6.4. Specific deuteration, combination with X-ray measurements

| top | pdf |

Many recent measurements use specific labelling and combine information with data from small-angle X-ray scattering. Studies of ligand binding (Bilgin et al., 1998[link]), hydration layers (Svergun et al., 1998[link]), troponin complexes (Olah et al., 1994[link]) and ribosomes (Svergun et al., 1996[link]) are examples that illustrate the approaches.

19.4.6.5. Distance measurements and triangulation

| top | pdf |

By measuring distances and radii of gyration, models of some large complexes have been created. These include a model of the relative positions of all 21 proteins in the small ribosomal subunit from E. coli (Capel et al., 1987[link]), a model of seven proteins from the large subunit (May et al., 1992[link]) and a model of the DNA-dependant RNA polymerase (Stöckel et al., 1980b[link]). Intramolecular conformational states of cholesterol esters have been observed using distance measurements on molecules chemically labelled in different regions (Burks & Engelman, 1981[link]).

References

First citation Atkinson, D. & Shipley, G. G. (1984). Structural studies of plasma lipoproteins. Basic Life Sci. 27, 211–226.Google Scholar
First citation Baldwin, J. P., Boseley, P. G., Bradbury, E. M. & Ibel, K. (1975). The subunit structure of the eukaryotic chromosome. Nature (London), 253, 245–249.Google Scholar
First citation Bilgin, N., Ehrenberg, M., Ebel, C., Zaccai, G., Sayers, Z., Koch, M. H. J., Svergun, D. I., Barberato, C., Volkov, V., Nissen, P. & Nyborg, J. (1998). Solution structure of the ternary complex between aminoacyl-tRNA, elongation factor Tu, and guanosine triphosphate. Biochemistry, 37, 8163–8172.Google Scholar
First citation Bradbury, E. M., Baldwin, J. P., Carpenter, B. G., Hjelm, R. P., Hancock, R. & Ibel, K. (1976). Neutron-scattering studies of chromatin. Brookhaven Symp Biol. 27, IV97–IV117.Google Scholar
First citation Burks, C. & Engelman, D. M. (1981). Cholesteryl myristate conformation in liquid crystalline mesophases determined by neutron scattering. Proc. Natl Acad. Sci. USA, 78, 6863–6867.Google Scholar
First citation Capel, M. S., Engelman, D. M., Freeborn, B. R., Kjeldgaard, M., Langer, J. A., Ramakrishnan, V., Schindler, D. G., Schneider, D. K., Schoenborn, B. P. & Sillers, I. Y. (1987). A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science, 238, 1403–1406.Google Scholar
First citation Crichton, R., Engelman, D. M., Hass, J., Koch, M. H. J., Moore, P. B., Parfait, R. & Stuhrmann, H. B. (1977). A contrast variation study of specifically deuterated ribosomal subunits. Proc. Natl Acad. Sci. USA, 74, 5547–5550.Google Scholar
First citation Dessen, P., Blanquet, S., Zaccai, G. & Jacrot, B. (1978). Antico-operative binding of initiator transfer RNA Met to methionyl-transfer RNA synthetase from E. coli: neutron scattering studies. J. Mol. Biol. 126, 293–313.Google Scholar
First citation Hunt, J. F., McCrea, P. D., Zaccai, G. & Engelman, D. M. (1997). Assessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering. J. Mol. Biol. 273, 1004–1019.Google Scholar
First citation Jeanteur, D., Pattus, F. & Timmins, P. A. (1994). Membrane-bound form of the pore-forming domain of colicin A. A neutron scattering study. J. Mol. Biol. 235, 898–907.Google Scholar
First citation Junemann, R., Burkhardt, N., Wadzack, J., Schmitt, M., Willumeit, R., Stuhrmann, H. B. & Nierhaus, K. H. (1998). Small angle scattering in ribosomal structure research: localization of the messenger RNA within ribosomal elongation states. J. Biol. Chem. 379, 807–818.Google Scholar
First citation May, R. P., Nowotny, V., Nowotny, P., Voss, H. & Nierhaus, K. H. (1992). Inter-protein distances within the large subunit from Escherichia coli ribosomes. EMBO J. 11, 373–378.Google Scholar
First citation Moore, P. B., Engelman, D. M. & Schoenborn, B. P. (1974). Asymmetry in the 50S ribosomal subunit of Escherichia coli. Proc. Natl Acad. Sci. USA, 71, 172–176.Google Scholar
First citation Nierhaus, K. H., Lietzke, R., May, R. P., Nowotny, V., Schulze, H., Simpson, K., Wurmbach, P. & Stuhrmann, H. B. (1983). Shape determinations of ribosomal proteins in situ. Proc. Natl Acad. Sci. USA, 80, 2889–2893.Google Scholar
First citation Nierhaus, K. H., Wadzack, J., Burkhardt, N., Junemann, R., Meerwinck, W., Willumeit, R. & Stuhrmann, H. B. (1998). Structure of the elongating ribosome: arrangement of the two tRNAs before and after translocation. Proc. Natl Acad. Sci. USA, 95, 945–950.Google Scholar
First citation Nowotny, P., Ruhl, M., Nowotny, V., May, R. P., Burkhardt, N., Voss, H. & Nierhaus, K. H. (1994). Direct shape determination of ribosomal proteins in solution and within the ribosome by means of neutron scattering. Biophys. Chem. 53, 115–122.Google Scholar
First citation Olah, G. A., Rokop, S. E., Wang, C. L., Blechner, S. L. & Trewhella, J. (1994). Troponin I encompasses an extended troponin C in the Ca(2+)-bound complex: a small-angle X-ray and neutron scattering study. Biochemistry, 33, 8233–8239.Google Scholar
First citation Stone, D. B., Timmins, P. A., Schneider, D. K., Krylova, I., Ramos, C. H., Reinach, F. C. & Mendelson, R. A. (1998). The effect of regulatory Ca2+ on the in situ structures of troponin C and troponin I: a neutron scattering study. J. Mol. Biol. 281, 689–704.Google Scholar
First citation Stuhrmann, H. B., Tardieu, A., Mateu, L., Sardet, C., Luzzati, V., Aggerbeck, L. & Scanu, A. M. (1975). Neutron scattering study of human serum low density lipoprotein. Proc. Natl Acad. Sci. USA, 72, 2270–2273.Google Scholar
First citation Stöckel, P., May, R., Strell, I., Cejka, Z., Hoppe, W., Heumann, H., Zillig, W. & Crespi, H. (1980a). The core subunit structure in RNA polymerase holoenzyme determined by neutron small-angle scattering. Eur. J. Biochem. 112, 411–417.Google Scholar
First citation Stöckel, P., May, R., Strell, I., Cejka, Z., Hoppe, W., Heumann, H., Zillig, W. & Crespi, H. L. (1980b). The subunit positions within RNA polymerase holoenzyme determined by triangulation of centre-to-centre distances. Eur. J. Biochem. 112, 419–423.Google Scholar
First citation Svergun, D. I., Koch, M. H., Pedersen, J. S. & Serdyuk, I. N. (1996). Structural model of the 50S subunit of E. coli ribosomes from solution scattering. Basic Life Sci. 64, 149–174.Google Scholar
First citation Svergun, D. I., Richard, S., Koch, M. H., Sayers, Z., Kuprin, S. & Zaccai, G. (1998). Protein hydration in solution: experimental observation by X-ray and neutron scattering. Proc. Natl Acad. Sci. USA, 95, 2267–2272.Google Scholar
First citation Timmins, P. A., Hauk, J., Wacker, T. & Welte, W. (1991). The influence of heptane-1,2,3-triol on the size and shape of LDAO micelles. Implications for the crystallisation of membrane proteins. FEBS Lett. 280, 115–120.Google Scholar








































to end of page
to top of page