International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 1.3, pp. 13-15   | 1 | 2 |

Section 1.3.4.1. Infectious diseases

W. G. J. Hola* and C. L. M. J. Verlindea

aBiomolecular Structure Center, Department of Biological Structure, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7742, USA
Correspondence e-mail:  hol@gouda.bmsc.washington.edu

1.3.4.1. Infectious diseases

| top | pdf |

1.3.4.1.1. Viral diseases

| top | pdf |

Some icosahedral pathogenic viruses have all their capsid proteins elucidated, while for the more complex viruses like influenza virus, hepatitis C virus (HCV) and HIV, numerous individual protein structures have been solved (Table 1.3.4.1[link]). However, not all 14 native proteins of the HIV genome have yet surrendered to the crystallographic community, nor to the NMR spectroscopists or the high-resolution electron microscopists, our partners in experimental structural biology (Turner & Summers, 1999[link]). Nevertheless, the structures of HIV protease, reverse transcriptase and fragments of HIV integrase and of HIV viral core and surface proteins are of tremendous value for developing novel anti-AIDS therapeutics [Arnold et al., 1996[link]; Lin et al., 1998[link]; Wlodawer & Vondrasek, 1998[link]; see also references in Table 1.3.4.1(a)[link]]. A similar situation occurs for hepatitis C virus. The protease structure of this virus has been solved recently (simultaneously by four groups!), as well as its helicase structure, providing platforms on the basis of which the design of novel drugs is actively pursued (Le et al., 1998[link]).

Table 1.3.4.1| top | pdf |
Important human pathogenic viruses and their proteins

(a) RNA viruses

(i) Single-stranded

FamilyExampleProtein structures solvedReference
ArenaviridaeLassa fever virusNone 
BunyaviridaeHantavirusNone 
CaliciviridaeHepatitis E virus, Norwalk virusNone 
CoronaviridaeCorona virusNone 
DeltaviridaeHepatitis D virusOligomerization domain of antigen[1]
FiloviridaeEbola virusGP2 of membrane fusion glycoprotein[2]
FlaviviridaeDengueNS3 protease[3]
Hepatitis CNS3 protease[4], [5]
RNA helicase[6]
Yellow feverNone 
Tick-borne encephalitis virusEnvelope glycoprotein[7]
OrthomyxoviridaeInfluenza virusNeuraminidase[8]
Haemagglutinin[9]
Matrix protein M1[10]
ParamyxoviridaeMeasles, mumps, parainfluenza, respiratory syncytial virusNone 
PicornaviridaeHepatitis A virus3C protease[11]
PoliovirusCapsid[12]
RNA-dependent polymerase[13]
RhinovirusCapsid[14]
3C protease[15]
EchovirusCapsid[16]
RetroviridaeHIVCapsid protein[17]
Matrix protein[18]
Protease[19], [20], [21]
Reverse transcriptase[22], [23], [47], [48], [49]
Integrase[24]
gp120[25]
NEF[26]
gp41[27]
RhabdovirusRabies virusNone 
TogaviridaeRubellaNone 

(ii) Double-stranded

FamilyExampleProtein structures solvedReference
ReoviridaeRotavirusNone 

(b) DNA viruses

(i) Single-stranded

FamilyExampleProtein structures solvedReference
ParvoviridaeB 19 virusNone 

(ii) Double-stranded

FamilyExampleProtein structures solvedReference
AdenoviridaeAdenovirusProtease[28]
Capsid[29]
Knob domain of fibre protein[30]
HepadnaviridaeHepatitis BCapsid[31]
HerpesviridaeCytomegalovirusProtease[32], [33], [34]
Epstein–Barr virusDomains of nuclear antigen 1[35]
BCRF1[36]
Herpes simplexProtease[37]
Thymidine kinase[38]
Uracyl-DNA glycosylase[39]
Core of VP16[40]
Varicella zosterProtease[42]
PapovaviridaePapillomavirusDNA-binding domain of E2[43]
Activation domain of E2[44]
PoxviridaeSmallpox virusNone 
Vaccinia virus (related to smallpox but non-pathogenic)Methyltransferase VP39[45]
Domain of topoisomerase[46]

References: [1] Zuccola et al. (1998)[link]; [2] Weissenhorn et al. (1998)[link]; [3] Murthy et al. (1999)[link]; [4] Love et al. (1996)[link]; [5] Yan et al. (1998)[link]; [6] Yao et al. (1997)[link]; [7] Rey et al. (1995)[link]; [8] Varghese et al. (1983)[link]; [9] Wilson et al. (1981)[link]; [10] Sha & Luo (1997)[link]; [11] Allaire et al. (1994)[link]; [12] Hogle et al. (1985)[link]; [13] Hansen et al. (1997)[link]; [14] Rossmann et al. (1985)[link]; [15] Matthews et al. (1994)[link]; [16] Filman et al. (1998)[link]; [17] Worthylake et al. (1999)[link]; [18] Hill et al. (1996)[link]; [19] Navia, Fitzgerald et al. (1989)[link]; [20] Wlodawer et al. (1989)[link]; [21] Erickson et al. (1990)[link]; [22] Rodgers et al. (1995)[link]; [23] Ding et al. (1995)[link]; [24] Dyda et al. (1994)[link]; [25] Kwong et al. (1998)[link]; [26] Lee et al. (1996)[link]; [27] Chan et al. (1997)[link]; [28] Ding et al. (1996)[link]; [29] Roberts et al. (1986)[link]; [30] Xia et al. (1994)[link]; [31] Wynne et al. (1999)[link]; [32] Tong et al. (1996)[link]; [33] Qiu et al. (1996)[link]; [34] Shieh et al. (1996)[link]; [35] Bochkarev et al. (1995)[link]; [36] Zdanov et al. (1997)[link]; [37] Hoog et al. (1997)[link]; [38] Wild et al. (1995)[link]; [39] Savva et al. (1995)[link]; [40] Liu et al. (1999)[link]; [42] Qiu et al. (1997)[link]; [43] Hegde & Androphy (1998)[link]; [44] Harris & Botchan (1999)[link]; [45] Hodel et al. (1996)[link]; [46] Sharma et al. (1994)[link]; [47] Kohlstaedt et al. (1992[link]); [48] Jacobo-Molina et al. (1993[link]); [49] Ren et al. (1995[link]).

A quite spectacular example of how structural knowledge can lead to the synthesis of powerful inhibitors is provided by influenza virus neuraminidase. The structure of a neuraminidase–transition-state analogue complex suggested the addition of positively charged amino and guanidinium groups to the C4 position of the analogue, which resulted, in one step, in a gain of four orders of magnitude in binding affinity for the target enzyme (von Itzstein et al., 1993[link]).

1.3.4.1.2. Bacterial diseases

| top | pdf |

A very large number of structures of important drug target proteins of bacterial origin have been solved crystallographically (Table 1.3.4.2[link]). Currently, the most important single infectious bacterial agent is Mycobacterium tuberculosis, with three million deaths and eight million new cases annually (Murray & Salomon, 1998[link]). The crystal structures of several M. tuberculosis potential and proven drug target proteins have been elucidated (Table 1.3.4.2[link]). The complete M. tuberculosis genome has been sequenced recently (Cole et al., 1998[link]), and this will undoubtedly have a tremendous impact on future drug development.

Table 1.3.4.2| top | pdf |
Protein structures of important human pathogenic bacteria

OrganismDisease(s)Protein structures solvedReference
Staphylococcus aureusAbscessesAlpha-haemolysin[1]
EndocarditisAureolysin[2]
GastroenteritisBeta-lactamase[3]
Toxic shock syndromeCollagen adhesin[4]
7,8-Dihydroneopterin aldolase[5]
Dihydropteroate synthetase[6]
Enterotoxin A[7]
Enterotoxin B[8]
Enterotoxin C2[9]
Enterotoxin C3[10]
Exfoliative toxin A[11]
Ile-tRNA-synthetase[12]
Kanamycin nucleotidyltransferase[13]
Leukocidin F[14]
Nuclease[15]
Staphopain[16]
Staphylokinase[17]
Toxic shock syndrome toxin-1[18]
Staphylococcus epidermidisImplant infectionsNone 
Enterococcus faecalisUrinary tract and biliary tract infectionsNADH peroxidase[19]
(Streptococcus faecalis) Histidine-containing phosphocarrier protein[20]
Streptococcus mutansEndocarditisGlyceraldehyde-3-phosphate dehydrogenase[21]
Streptococcus pneumoniaePneumoniaPenicillin-binding protein PBP2x[22]
Meningitis, upper respiratory tract infectionsDpnm DNA adenine methyltransferase[23]
Streptococcus pyogenesPharyngitisInosine monophosphate dehydrogenase[24]
Scarlet fever, toxic shock syndrome, immunologic disorders (acute glomerulonephritis and rheumatic fever)Pyrogenic exotoxin C[25]
Bacillus anthracisAnthraxAnthrax protective antigen[26]
Bacillus cereusFood poisoningBeta-amylase[27]
Beta-lactamase II[28]
Neutral protease[29]
Oligo-1,6-glucosidase[30]
Phospholipase C[31]
Clostridium botulinumBotulismNeurotoxin type A[32]
Clostridium difficilePseudomembranous colitisNone 
Clostridium perfringensGas gangreneAlpha toxin[33]
Food poisoningPerfringolysin O[34]
Clostridium tetaniTetanusToxin C fragment[35]
Corynebacterium diphtheriaeDiphtheriaToxin[36]
Toxin repressor[37]
Listeria monocytogenesMeningitis, sepsisPhosphatidylinositol-specific phospholipase C[38]
Actinomyces israeliiActinomycosisNone 
Nocardia asteroidesNocardiosisNone 
Neisseria gonorrhoeaeGonorrheaType 4 pilin[39]
Carbonic anhydrase[40]
Neisseria meningitidisMeningitisDihydrolipoamide dehydrogenase[41]
Bordetella pertussisWhooping coughToxin[42]
Virulence factor P.69[43]
Brucella sp.BrucellosisNone 
Campylobacter jejuniEnterocolitisNone 
Enterobacter cloacaeUrinary tract infection, pneumoniaBeta-lactamase: class C[44]
UDP-N-acetylglucosamine enolpyruvyltransferase[45]
Escherichia coli   
 ETEC (enterotoxigenic)Traveller's diarrhoeaHeat-labile enterotoxin[46]
Heat-stable enterotoxin (is a peptide)[47]
 EHEC (enterohaemorrhagic)HUSVerotoxin-1[48]
 EPEC (enteropathogenic)DiarrhoeaNone 
 EAEC (enteroaggregative)DiarrhoeaNone 
 EIEC (enteroinvasive)DiarrhoeaNone 
 UPEC (uropathogenic) FimH adhesin[49]
FimC chaperone[49]
PapD[50]
 NMEC (neonatal meningitis)MeningitisNone 
Franciscella tularensisTularemiaNone 
Haemophilus influenzaeMeningitis, otitis media, pneumoniaDiaminopimelate epimerase[51]
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase[52]
Ferric iron binding protein Mirp[53]
Klebsiella pneumoniaeUrinary tract infection, pneumonia, sepsisβ-Lactamase SHV-1[54]
Legionella pneumophilaPneumoniaNone 
Pasteurella multocidaWound infectionNone 
Proteus mirabilisPneumonia, urinary tract infectionCatalase[55]
Glutathione S-transferase[56]
Proteus vulgarisUrinary tract infectionsPvu II DNA-(cytosine N4) methyltransferase[57]
Pvu II endonuclease[58]
Tryptophanase[59]
Salmonella typhiTyphoid feverNone, but many for S. typhimurium linked with zoonotic disease 
Salmonella enteridisEnterocolitisNone 
Serratia marcescensPneumonia, urinary tract infectionSerralysin[60]
Aminoglycoside 3-N-acetyltransferase[61]
Chitinase A[62]
Chitobiase[63]
Endonuclease[64]
Hasa (haemophore)[65]
Prolyl aminopeptidase[66]
Shigella sp.DysenteryChloramphenicol acetyltransferase[67]
Shiga-like toxin I[68]
Vibrio choleraeCholeraCholera toxin[69], [70]
DSBA oxidoreductase[71]
Neuraminidase[104]
Yersinia enterocoliticaEnterocolitisProtein-Tyr phosphatase YOPH[72]
Yersinia pestisPlagueNone 
Pseudomonas aeruginosaWound infection, urinary tract infection, pneumonia, sepsisAlkaline metalloprotease[73]
Amidase operon[74]
Azurin[75]
Cytochrome 551[76]
Cytochrome c peroxidase[77]
Exotoxin A[78]
p-Hydroxybenzoate hydroxylase[79]
Hexapeptide xenobiotic acetyltransferase[80]
Mandelate racemase[81]
Nitrite reductase[82]
Ornithine transcarbamoylase[83]
Porphobilinogen synthase[84]
Pseudolysin[85]
Burkholderia cepaciaWound infection, urinary tract infection, pneumonia, sepsisBiphenyl-cleaving extradiol dioxygenase[86]
cis-Biphenyl-2,3-dihydrodiol-2,3-dehydrogenase[87]
Dialkylglycine decarboxylase[88]
Lipase[89]
Phthalate dioxygenase reductase[90]
Stenotrophomonas maltophilia (= Pseudomonas maltophilia)SepsisNone 
Bacteroides fragilisIntra-abdominal infectionsBeta-lactamase type 2[91]
Mycobacterium lepraeLeprosyChaperonin-10 (GroES homologue)[92]
RUVA protein[93]
Mycobacterium tuberculosisTuberculosis3-Dehydroquinate dehydratase[94]
Dihydrofolate reductase[95]
Dihydropteroate synthase[96]
Enoyl acyl-carrier-protein reductase (InhA)[97]
Mechanosensitive ion channel[98]
Quinolinate phosphoribosyltransferase[99]
Superoxide dismutase (iron dependent)[100]
Iron-dependent repressor 
Mycobacterium bovisTuberculosisTetrahydrodipicolinate-N-succinyltransferase[102]
Chlamydia psitacciPsittacosisNone 
Chlamydia pneumoniaeAtypical pneumoniaNone 
Chlamydia trahomatisOcular, respiratory and genital infectionsNone 
Coxiella burnetiiQ feverNone 
Rickettsia sp.Rocky Mountain spotted feverNone 
Borrelia burgdorferiLyme diseaseOuter surface protein A[103]
Leptospira interrogansLeptospirosisNone 
Treponema pallidumSyphilisNone 
Mycoplasma pneumoniaeAtypical pneumoniaNone 

References: [1] Song et al. (1996)[link]; [2] Banbula et al. (1998)[link]; [3] Herzberg & Moult (1987)[link]; [4] Symersky et al. (1997)[link]; [5] Hennig et al. (1998)[link]; [6] Hampele et al. (1997)[link]; [7] Sundstrom et al. (1996)[link]; [8] Papageorgiou et al. (1998)[link]; [9] Papageorgiou et al. (1995)[link]; [10] Fields et al. (1996)[link]; [11] Vath et al. (1997)[link]; [12] Silvian et al. (1999)[link]; [13] Pedersen et al. (1995)[link]; [14] Pedelacq et al. (1999)[link]; [15] Loll & Lattman (1989)[link]; [16] Hofmann et al. (1993)[link]; [17] Rabijns et al. (1997)[link]; [18] Prasad et al. (1993)[link]; [19] Yeh et al. (1996)[link]; [20] Jia et al. (1993)[link]; [21] Cobessi et al. (1999)[link]; [22] Pares et al. (1996)[link]; [23] Tran et al. (1998)[link]; [24] Zhang, Evans et al. (1999)[link]; [25] Roussel et al. (1997)[link]; [26] Petosa et al. (1997)[link]; [27] Mikami et al. (1999)[link]; [28] Carfi et al. (1995)[link]; [29] Pauptit et al. (1988)[link]; [30] Watanabe et al. (1997)[link]; [31] Hough et al. (1989)[link]; [32] Lacy et al. (1998)[link]; [33] Naylor et al. (1998)[link]; [34] Rossjohn, Feil, McKinstry et al. (1997)[link]; [35] Umland et al. (1997)[link]; [36] Choe et al. (1992)[link]; [37] Qiu et al. (1995)[link]; [38] Moser et al. (1997)[link]; [39] Parge et al. (1995)[link]; [40] Huang, Xue et al. (1998)[link]; [41] Li de la Sierra et al. (1997)[link]; [42] Stein et al. (1994)[link]; [43] Emsley et al. (1996)[link]; [44] Lobkovsky et al. (1993)[link]; [45] Schonbrunn et al. (1996)[link]; [46] Sixma et al. (1991)[link]; [47] Ozaki et al. (1991)[link]; [48] Stein et al. (1992)[link]; [49] Choudhury et al. (1999)[link]; [50] Sauer et al. (1999)[link]; [51] Cirilli et al. (1993)[link]; [52] Hennig et al. (1999)[link]; [53] Bruns et al. (1997)[link]; [54] Kuzin et al. (1999)[link]; [55] Gouet et al. (1995)[link]; [56] Rossjohn, Polekhina et al. (1998)[link]; [57] Gong et al. (1997)[link]; [58] Athanasiadis et al. (1994)[link]; [59] Isupov et al. (1998)[link]; [60] Baumann (1994)[link]; [61] Wolf et al. (1998)[link]; [62] Perrakis et al. (1994)[link]; [63] Tews et al. (1996)[link]; [64] Miller et al. (1994)[link]; [65] Arnoux et al. (1999)[link]; [66] Yoshimoto et al. (1999)[link]; [67] Murray et al. (1995)[link]; [68] Ling et al. (1998)[link]; [69] Merritt et al. (1994)[link]; [70] Zhang et al. (1995)[link]; [71] Hu et al. (1997)[link]; [72] Stuckey et al. (1994)[link]; [73] Miyatake et al. (1995)[link]; [74] Pearl et al. (1994)[link]; [75] Adman et al. (1978)[link]; [76] Almassy & Dickerson (1978)[link]; [77] Fulop et al. (1995)[link]; [78] Allured et al. (1986)[link]; [79] Gatti et al. (1994)[link]; [80] Beaman et al. (1998)[link]; [81] Kallarakal et al. (1995)[link]; [82] Nurizzo et al. (1997)[link]; [83] Villeret et al. (1995)[link]; [84] Frankenberg et al. (1999)[link]; [85] Thayer et al. (1991)[link]; [86] Han et al. (1995)[link]; [87] Hulsmeyer et al. (1998)[link]; [88] Toney et al. (1993)[link]; [89] Kim et al. (1997)[link]; [90] Correll et al. (1992)[link]; [91] Concha et al. (1996)[link]; [92] Mande et al. (1996)[link]; [93] Roe et al. (1998)[link]; [94] Gourley et al. (1999)[link]; [95] Li et al. (2000[link]); [96] Baca et al. (2000[link]); [97] Dessen et al. (1995)[link]; [98] Chang, Spencer et al. (1998)[link]; [99] Sharma et al. (1998)[link]; [100] Cooper et al. (1995)[link]; [102] Beaman et al. (1997)[link]; [103] Li et al. (1997)[link]; [104] Crennell et al. (1994[link]).

The crystal structures of many bacterial dihydrofolate reductases, the target of several antimicrobials including trimethoprim, have also been reported. Recently, the atomic structure of dihydropteroate synthase (DHPS), the target of sulfa drugs, has been elucidated, almost 60 years after the first sulfa drugs were used to treat patients (Achari et al., 1997[link]; Hampele et al., 1997[link]).

A very special set of bacterial proteins are the toxins. Some of these have dramatic effects, with even a single molecule able to kill a host cell. These toxins outsmart and (mis)use many of the defence systems of the host, and their structures are often most unusual and fascinating, as recently reviewed by Lacy & Stevens (1998[link]). The structures of the toxins are actively used for the design of prophylactics and therapeutic agents to treat bacterial diseases [see e.g. Merritt et al. (1997[link]), Kitov et al. (2000[link]) and Fan et al. (2000[link])]. It is remarkable that the properties of these devastating toxins are also used, or at least considered, for the treatment of disease, such as in the engineering of diphtheria toxin to create immunotoxins for the treatment of cancer and the deployment of cholera toxin mutants as adjuvants in mucosal vaccines. Knowledge of the three-dimensional structures of these toxins assists in the design of new therapeutically useful proteins.

1.3.4.1.3. Protozoan infections

| top | pdf |

A major cause of death and worldwide suffering is due to infections by several protozoa, including:

  • (a) Plasmodium falciparum and related species, causing various forms of malaria;

  • (b) Trypanosoma cruzi, the causative agent of Chagas' disease in Latin America;

  • (c) Trypanosoma brucei, causing sleeping sickness in Africa;

  • (d) Some eleven different Leishmania species, responsible for several of the most horribly disfiguring diseases known to mankind.

Drug resistance, combined with other factors, has been the cause of a major disappointment for the early hopes of a `malaria eradication campaign'. Fortunately, new initiatives have been launched recently under the umbrella of the `Malaria roll back' program and the `Multilateral Initiative for Malaria' (MIM). We are facing a formidable challenge, however, since the parasite is very clever at evading the immune response of the human host. Drugs are the mainstay of current treatments and may well be so for a long time to come. Protein crystallographic studies of Plasmodium proteins are hampered by the unusual codon usage of the Plasmodium species, coupled with a tendency to contain insertions of numerous hydrophilic residues in the polypeptide chain (Gardner et al., 1998[link]) which provide sometimes serious obstacles to obtaining large amounts of Plasmodium proteins for structural investigations.

However, the structures of an increasing number of potential drug targets from these protozoan parasites are being unravelled. These include the variable surface glycoproteins (VSGs) and glycolytic enzymes of Trypanosoma brucei, crucial malaria proteases, and the remarkable trypanothione reductase (Table 1.3.4.3[link]). The structures of nucleotide phosphoribosyl transferases of a variety of protozoan parasites have also been elucidated. Moreover, the structure of DHFR from Pneumocystis carinii, the major opportunistic pathogen in AIDS patients in the United States, has been determined. Several of these structures are serving as starting points for the development of new drugs.

Table 1.3.4.3| top | pdf |
Protein structures of important human pathogenic protozoa, fungi and helminths

(a) Protozoa

OrganismDiseaseProtein structures solvedReference
Acanthamoeba sp.Opportunistic meningoencephalitis, corneal ulcersActophorin[1]
Profilin[2]
Cryptosporidium parvumCryptosporidiosisNone 
Entamoeba histolyticaAmoebic dysentery, liver abscessesNone 
Giardia lambliaGiardiasisNone 
Leishmania sp.LeishmaniasisAdenine phosphoribosyltransferase[3]
Dihydrofolate reductase-thymidylate synthase[4]
Glyceraldehyde-3-phosphate dehydrogenase[5]
Leishmanolysin[6]
Nucleoside hydrolase[7]
Pyruvate kinase[8]
Triosephosphate isomerase[9]
Plasmodium sp.MalariaFructose-1,6-bisphosphate aldolase[10]
Lactate dehydrogenase[11]
MSP1[12]
Plasmepsin II[13]
Purine phosphoribosyltransferase[14]
Triosephosphate isomerase[15]
Pneumocystis cariniiPneumoniaDihydrofolate reductase[16]
Toxoplasma gondiiToxoplasmosisHGXPRTase[17]
UPRTase[18]
Trichomonas vaginalisTrichomoniasisNone 
Trypanosoma bruceiSleeping sicknessFructose-1,6-bisphosphate aldolase[19]
Glyceraldehyde-3-phosphate dehydrogenase[20]
6-Phosphogluconate dehydrogenase[21]
Phosphoglycerate kinase[22]
Triosephosphate isomerase[23]
VSG[24]
Trypanosoma cruziChagas' diseaseCruzain (cruzipain)[25]
Glyceraldehyde-3-phosphate dehydrogenase[26]
Hypoxanthine phosphoribosyltransferase[27]
Triosephosphate isomerase[28]
Trypanothione reductase[29]
Tyrosine aminotransferase[30]

(b) Fungi

OrganismDiseaseProtein structures solvedReference
Aspergillus fumigatusAspergillosisRestrictocin[31]
Blastomyces dermatidisBlastomycosisNone 
Candida albicansCandidiasisDihydrofolate reductase[32]
N-Myristoyl transferase[33]
Phosphomannose isomerase[34]
Secreted Asp protease[35]
Coccidiodes immitisCoccidioidomycosisNone 
Cryptococcus neoformansCryptococcosisNone 
Histoplasma capsulatumHistoplasmosisNone 
Mucor sp.MucormycosisNone 
Paracoccidioides brasiliensisParacoccidioidomycosisNone 
Rhizopus sp.PhycomycosisLipase II[36]
Rhizopuspepsin[37]
RNase Rh[38]

(c) Helminths

OrganismDiseaseProtein structures solvedReference
Clonorchis sinensisClonorchiasisNone 
Fasciola hepaticaFasciolasisGlutathione S-transferase[39]
Fasciolopsis buskiFasciolopsiasisNone 
Paragominus westermaniParagonimiasisNone 
Schistosoma sp.SchistosomiasisGlutathione S-transferase[39], [40]
Hexokinase[41]
Diphyllobotrium latumDiphyllobothriasisNone 
Echinococcus granulosusUnilocular hydatid cyst diseaseNone 
Taenia saginataTaeniasisNone 
Taenia soliumTaeniasisNone 
Ancylostoma duodenaleOld World hookworm diseaseNone 
AnisakisAnisakiasisNone 
Ascaris lumbricoidesAscariasisHaemoglobin[42]
Major sperm protein[43]
Trypsin inhibitor[44]
Enterobius vermicularisPinworm infectionNone 
NecatorNew World hookworm diseaseNone 
Strongyloides stercoralisStrongyloidiasisNone 
Trichinella spiralisTrichinosisNone 
Trichuris trichiuraWhipworm infectionNone 
Brugia malayiFilariasisPeptidylprolyl isomerase[45], [46]
Dracunculus medinensisGuinea worm diseaseNone 
Loa loaLoiasisNone 
Onchocerca volvulusRiver blindnessNone 
Toxocara canisVisceral larva migransNone 
Wuchereria bancrofti Lymphatic filariasis (elephantiasis)None 

References: [1] Leonard et al. (1997)[link]; [2] Liu et al. (1998)[link]; [3] Phillips et al. (1999)[link]; [4] Knighton et al. (1994)[link]; [5] Kim et al. (1995)[link]; [6] Schlagenhauf et al. (1998)[link]; [7] Shi, Schramm & Almo (1999)[link]; [8] Rigden et al. (1999)[link]; [9] Williams et al. (1999)[link]; [10] Kim et al. (1998)[link]; [11] Read et al. (1999)[link]; [12] Chitarra et al. (1999)[link]; [13] Silva et al. (1996)[link]; [14] Shi, Li et al. (1999)[link]; [15] Velanker et al. (1997)[link]; [16] Champness et al. (1994)[link]; [17] Schumacher et al. (1996)[link]; [18] Schumacher et al. (1998)[link]; [19] Chudzik et al. (2000[link]); [20] Vellieux et al. (1993)[link]; [21] Phillips et al. (1998)[link]; [22] Bernstein et al. (1998)[link]; [23] Wierenga et al. (1987)[link]; [24] Freymann et al. (1990)[link]; [25] McGrath et al. (1995)[link]; [26] Souza et al. (1998)[link]; [27] Focia et al. (1998)[link]; [28] Maldonado et al. (1998)[link]; [29] Lantwin et al. (1994)[link]; [30] Blankenfeldt et al. (1999)[link]; [31] Yang & Moffat (1995)[link]; [32] Whitlow et al. (1997)[link]; [33] Weston et al. (1998)[link]; [34] Cleasby et al. (1996)[link]; [35] Cutfield et al. (1995)[link]; [36] Kohno et al. (1996)[link]; [37] Suguna et al. (1987)[link]; [38] Kurihara et al. (1992)[link]; [39] Rossjohn, Feil, Wilce et al. (1997)[link]; [40] McTigue et al. (1995)[link]; [41] Mulichak et al. (1998)[link]; [42] Yang et al. (1995)[link]; [43] Bullock et al. (1996)[link]; [44] Huang et al. (1994)[link]; [45] Mikol et al. (1998)[link]; [46] Taylor et al. (1998)[link].

1.3.4.1.4. Fungi

| top | pdf |

In general, the human immune system is able to keep the growth of fungi under control, but in immuno-compromised patients (e.g. as a result of cancer chemotherapy, HIV infection, transplantation patients receiving immunosuppressive drugs, genetic disorders) such organisms are given opportunities they usually do not have. Candida albicans is an opportunistic fungal organism which causes serious complications in immuno-compromised patients. Several of its proteins have been structurally characterized (Table 1.3.4.3[link]) and provide opportunities for the development of selectively active inhibitors.

1.3.4.1.5. Helminths

| top | pdf |

Worms affect the lives of billions of human beings, causing serious morbidity in many ways. Onchocerca volvolus is the cause of river blindness, which resulted in the virtual disappearance of entire villages in West Africa, until ivermectin appeared. This remarkable compound dramatically reduced the incidence of the disease, even though it does not kill the adult worms. Therefore, a biological clock is ticking, waiting until resistance occurs against this single compound available for treatment. Schistosoma species are responsible for a wide variety of liver diseases and are spreading continuously since irrigation schemes provide a perfect environment for the intermediate snail vector. Other medically important helminths are Wuchereria bancrofti and Brugia malayi. Only a few protein structures from these very important disease-causing organisms have been unravelled so far (Table 1.3.4.3[link]).

References

First citation Achari, A., Somers, D. O., Champness, J. N., Bryant, P. K., Rosemond, J. & Stammers, D. K. (1997). Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nature Struct. Biol. 4, 490–497.Google Scholar
First citation Arnold, E., Das, K., Ding, J., Yadav, P. N., Hsiou, Y., Boyer, P. L. & Hughes, S. H. (1996). Targeting HIV reverse transcriptase for anti-AIDS drug design: structural and biological considerations for chemotherapeutic strategies. Drug Des. Discov. 13, 29–47.Google Scholar
First citation Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E. III, Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M. A., Rajandream, M. A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J. E., Taylor, K., Whitehead, S. & Barrell, B. G. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature (London), 393, 537–544.Google Scholar
First citation Fan, E., Zhang, Z., Minke, W. E., Hou, Z., Verlinde, C. L. M. J. & Hol, W. G. J. (2000). A 105 gain in affinity for pentavalent ligands of E. coli heat-labile enterotoxin by modular structure-based design. J. Am. Chem. Soc. 122, 2663–2664.Google Scholar
First citation Gardner, M. J., Tettelin, H., Carucci, D. J., Cummings, L. M., Aravind, L., Koonin, E. V., Shallom, S., Mason, T., Yu, K., Fujii, C., Pederson, J., Shen, K., Jing, J., Aston, C., Lai, Z., Schwartz, D. C., Pertea, M., Salzburg, S., Zhou, L., Sutton, G. G., Clayton, R., White, O., Smith, H. O., Fraser, C. M., Adams, M. D., Venter, J. C. & Hoffman, S. L. (1998). Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science, 282, 1126–1132.Google Scholar
First citation Hampele, I. C., D'Arcy, A., Dale, G. E., Kostrewa, D., Nielsen, J., Oefner, C., Page, M. G., Schonfeld, H. J., Stuber, D. & Then, R. L. (1997). Structure and function of the dihydropteroate synthase from Staphylococcus aureus. J. Mol. Biol. 268, 21–30.Google Scholar
First citation Itzstein, M. von, Wu, W. Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Van Phan, T., Smythe, M. L., White, H. F., Oliver, S. W., Colman, P. M., Varghese, J. N., Ryan, D. M., Woods, J. M., Bethell, R. C., Hotham, V. J., Cameron, J. M. & Penn, C. R. (1993). Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature (London), 363, 418–423.Google Scholar
First citation Kitov, P. I., Sadowska, J. M., Mulvey, G., Armstrong, G. D., Ling, H., Pannu, N. S., Read, R. J. & Bundle, D. R. (2000). Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature (London), 403, 669–672.Google Scholar
First citation Lacy, D. B. & Stevens, R. C. (1998). Unraveling the structure and modes of action of bacterial toxins. Curr. Opin. Struct. Biol. 8, 778–784.Google Scholar
First citation Le, H. V., Yao, N. & Weber, P. C. (1998). Emerging targets in the treatment of hepatitis C infection. Emerg. Ther. Targets, 2, 125–136.Google Scholar
First citation Lin, J. H., Ostovic, D. & Vacca, J. P. (1998). The integration of medicinal chemistry, drug metabolism, and pharmaceutical research and development in drug discovery and development. The story of Crixivan, an HIV protease inhibitor. Pharm. Biotechnol. 99, 233–255.Google Scholar
First citation Merritt, E. A., Sarfaty, S., Feil, I. K. & Hol, W. G. J. (1997). Structural foundation for the design of receptor antagonists targeting E. coli heat-labile enterotoxin. Structure, 5, 1485–1499.Google Scholar
First citation Murray, C. J. & Salomon, J. A. (1998). Modeling the impact of global tuberculosis control strategies. Proc. Natl Acad. Sci. USA, 95, 13881–13886.Google Scholar
First citation Turner, B. G. & Summers, M. F. (1999). Structural biology of HIV. J. Mol. Biol. 285, 1–32.Google Scholar
First citation Wlodawer, A. & Vondrasek, J. (1998). Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct. 27, 249–284.Google Scholar








































to end of page
to top of page