International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 22.1, p. 545   | 1 | 2 |

Section 22.1.2.5. Conclusion

M. S. Chapmanb* and M. L. Connollyc

22.1.2.5. Conclusion

| top | pdf |

Both quantitative and qualitative analyses of the surfaces of biomolecules are among the most powerful methods of elucidating functional mechanism from three-dimensional structures. A wide array of methods have been developed to help understand binding interactions and macromolecular assembly and to visualize the shape and physiochemical surface properties of macromolecules. Visualization methods range from those that depict a realistic impression of the topology to those that are more schematic and facilitate collation of structural and genetic information.

References

First citation Blake, C. C. F., Koenig, D. F., Mair, G. A., North, A. C. T., Phillips, D. C. & Sarma, V. R. (1965). Structure of hen egg-white lysozyme, a three-dimensional Fourier synthesis at 2 Å resolution. Nature (London), 206, 757–761.Google Scholar
First citation Bondi, A. (1964). van der Waals volumes and radii. J. Phys. Chem. 68, 441–451.Google Scholar
First citation Bondi, A. (1968). Molecular crystals, liquids and glasses. New York: Wiley.Google Scholar
First citation Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. & Karplus, M. (1983). CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.Google Scholar
First citation Chapman, M. S. (1993). Mapping the surface properties of macromolecules. Protein Sci. 2, 459–469.Google Scholar
First citation Chapman, M. S. (1994). Sequence similarity scores and the inference of structure/function relationships. Comput. Appl. Biosci. (CABIOS), 10, 111–119.Google Scholar
First citation Chothia, C. (1975). Structural invariants in protein folding. Nature (London), 254, 304–308.Google Scholar
First citation Diamond, R. (1974). Real-space refinement of the structure of hen egg-white lysozyme. J. Mol. Biol. 82, 371–391.Google Scholar
First citation Dunfield, L. G., Burgess, A. W. & Scheraga, H. A. (1979). J. Phys. Chem. 82, 2609.Google Scholar
First citation Eisenberg, D. & McLachlan, A. D. (1986). Solvation energy in protein folding and binding. Nature (London), 319, 199–203.Google Scholar
First citation Fritz-Wolf, K., Schnyder, T., Wallimann, T. & Kabsch, W. (1996). Structure of mitochondrial creatine kinase. Nature (London), 381, 341–345.Google Scholar
First citation Gelin, B. R. & Karplus, M. (1979). Side-chain torsional potentials: effect of dipeptide, protein, and solvent environment. Biochemistry, 18, 1256–1268.Google Scholar
First citation Gerstein, M., Tsai, J. & Levitt, M. (1995). The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. J. Mol. Biol. 249, 955–966.Google Scholar
First citation Harpaz, Y., Gerstein, M. & Chothia, C. (1994). Volume changes on protein folding. Structure, 2, 641–649.Google Scholar
First citation Kelly, J. A., Sielecki, A. R., Sykes, B. D., James, M. N. & Phillips, D. C. (1979). X-ray crystallography of the binding of the bacterial cell wall trisaccharaide NAM-NAG-NAM to lysozymes. Nature (London), 282, 875–878.Google Scholar
First citation Kim, K. H., Willingmann, P., Gong, Z. X., Kremer, M. J., Chapman, M. S., Minor, I., Oliveira, M. A., Rossmann, M. G., Andries, K., Diana, G. D., Dutko, F. J., McKinlay, M. A. & Pevear, D. C. (1993). A comparison of the anti-rhinoviral drug binding pocket in HRV14 and HRV1A. J. Mol. Biol. 230, 206–227.Google Scholar
First citation Kraulis, P. J. (1991). MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950.Google Scholar
First citation Lee, B. & Richards, F. M. (1971). The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400.Google Scholar
First citation Levitt, M., Hirshberg, M., Sharon, R. & Daggett, V. (1995). Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput. Phys. Comm. 91, 215–231.Google Scholar
First citation Nemethy, G., Pottle, M. S. & Scheraga, H. A. (1983). Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions and hydrogen bond interactions for the naturally occurring amino acids. J. Phys. Chem. 87, 1883–1887.Google Scholar
First citation Olson, N., Kolatkar, P., Oliveira, M. A., Cheng, R. H., Greve, J. M., McClelland, A., Baker, T. S. & Rossmann, M. G. (1993). Structure of a human rhinovirus complexed with its receptor molecule. Proc. Natl Acad. Sci. USA, 90, 507–511.Google Scholar
First citation Palmenberg, A. C. (1989). Sequence alignments of picornaviral capsid proteins. In Molecular aspects of picornavirus infection and detection, edited by B. L. Semler & E. Ehrenfeld, pp. 211–241. Washington DC: American Society for Microbiology.Google Scholar
First citation Pauling, L. (1960). The nature of the chemical bond, 3rd ed. Ithaca: Cornell University Press. Google Scholar
First citation Richards, F. M. (1974). The interpretation of protein structures: total volume, group volume distributions and packing density. J. Mol. Biol. 82, 1–14.Google Scholar
First citation Richards, F. M. (1977). Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6, 151–176.Google Scholar
First citation Richmond, T. J. & Richards, F. M. (1978). Packing of alpha-helices: geometrical constraints and contact areas. J. Mol. Biol. 119, 537–555.Google Scholar
First citation Rossmann, M. G. (1989). The canyon hypothesis. J. Biol. Chem. 264, 14587–14590.Google Scholar
First citation Sherry, B., Mosser, A. G., Colonno, R. J. & Rueckert, R. R. (1986). Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. J. Virol. 57, 246–257.Google Scholar
First citation Sherry, B. & Rueckert, R. (1985). Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J. Virol. 53, 137–143.Google Scholar
First citation Shrake, A. & Rupley, J. A. (1973). Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79, 351–371.Google Scholar
First citation Tsai, J., Taylor, R., Chothia, C. & Gerstein, M. (1999). The packing density in proteins: standard radii and volumes. J. Mol. Biol. 290, 253–266.Google Scholar
First citation Tsai, J., Voss, N. & Gerstein, M. (2001). Voronoi calculations of protein volumes: sensitivity analysis and parameter database. Bioinformatics. In the press.Google Scholar
First citation Zhou, G., Somasundaram, T., Blanc, E., Parthasarathy, G., Ellington, W. R. & Chapman, M. S. (1998). Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proc. Natl Acad. Sci. USA, 95, 8449–8454.Google Scholar








































to end of page
to top of page