International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecues
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 22.3, p. 555   | 1 | 2 |

Section 22.3.2.5. Numerical methods

K. A. Sharpa*

aE. R. Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
Correspondence e-mail: sharp@crystal.med.upenn.edu

22.3.2.5. Numerical methods

| top | pdf |

A variety of numerical methods exist for calculating electrostatic potentials of macromolecules. These include numerical solution of self-consistent field electrostatic equations, which has been used in conjunction with the protein dipole–Langevin dipole method (Lee et al., 1993[link]). Numerical solution of the Poisson–Boltzmann equation requires the solution of a three-dimensional partial differential equation, which can be nonlinear. Many numerical techniques, some developed in engineering fields to solve differential equations, have been applied to the PB equation. These include finite-difference methods (Bruccoleri et al., 1996[link]; Gilson et al., 1988[link]; Nicholls & Honig, 1991[link]; Warwicker & Watson, 1982[link]), finite-element methods (Rashin, 1990[link]; Yoon & Lenhoff, 1992[link]; Zauhar & Morgan, 1985[link]), multigridding (Holst & Saied, 1993[link]; Oberoi & Allewell, 1993[link]), conjugate-gradient methods (Davis & McCammon, 1989[link]) and fast multipole methods (Bharadwaj et al., 1994[link]; Davis, 1994[link]). Methods for treating the nonlinear PB equation include under-relaxation (Jayaram, Sharp & Honig, 1989[link]) and powerful inexact Newton methods (Holst et al., 1994[link]). The nonlinear PB equation can also be solved via a self-consistent field approach, in which one calculates the potential using equation (22.3.2.5[link]), then the mobile charge density is calculated using equation (22.3.2.3[link]), and the procedure is repeated until convergence is reached (Pack & Klein, 1984[link]; Pack et al., 1986[link]). The method allows one to include more elaborate models for the ion distribution, for example incorporating the finite size of the ions (Pack et al., 1993[link]). Approximate methods based on spherical approximations (Born-type models) have also been used (Schaeffer & Frommel, 1990[link]; Still et al., 1990[link]). Considerable numerical progress has been made in finite methods, and accurate rapid algorithms are available. The reader is referred to the original references for numerical details.

References

First citation Bharadwaj, R., Windemuth, A., Sridharan, S., Honig, B. & Nicholls, A. (1994). The fast multipole boundary-element method for molecular electrostatics – an optimal approach for large systems. J. Comput. Chem. 16, 898–913.Google Scholar
First citation Bruccoleri, R. E., Novotny, J., Sharp, K. A. & Davis, M. E. (1996). Finite difference Poisson–Boltzmann electrostatic calculations: increased accuracy achieved by harmonic dielectric smoothing and charge anti-aliasing. J. Comput. Chem. 18, 268–276.Google Scholar
First citation Davis, M. E. (1994). The inducible multipole solvation model – a new model for solvation effects on solute electrostatics. J. Chem. Phys. 100, 5149–5159.Google Scholar
First citation Davis, M. E. & McCammon, J. A. (1989). Solving the finite difference linear Poisson Boltzmann equation: comparison of relaxational and conjugate gradient methods. J. Comput. Chem. 10, 386–395.Google Scholar
First citation Gilson, M., Sharp, K. A. & Honig, B. (1988). Calculating the electrostatic potential of molecules in solution: method and error assessment. J. Comput. Chem. 9, 327–335.Google Scholar
First citation Holst, M., Kozack, R., Saied, F. & Subramaniam, S. (1994). Protein electrostatics – rapid multigrid-based Newton algorithm for solution of the full nonlinear Poisson–Boltzmann equation. J. Biomol. Struct. Dyn. 11, 1437–1445.Google Scholar
First citation Holst, M. & Saied, F. (1993). Multigrid solution of the Poisson–Boltzmann equation. J. Comput. Chem. 14, 105–113.Google Scholar
First citation Jayaram, B., Sharp, K. A. & Honig, B. (1989). The electrostatic potential of B-DNA. Biopolymers, 28, 975–993.Google Scholar
First citation Lee, F., Chu, Z. & Warshel, A. (1993). Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the Polaris and Enzymix programs. J. Comput. Chem. 14, 161–185.Google Scholar
First citation Nicholls, A. & Honig, B. (1991). A rapid finite difference algorithm utilizing successive over-relaxation to solve the Poisson–Boltzmann equation. J. Comput. Chem. 12, 435–445.Google Scholar
First citation Oberoi, H. & Allewell, N. (1993). Multigrid solution of the nonlinear Poisson–Boltzmann equation and calculation of titration curves. Biophys. J. 65, 48–55.Google Scholar
First citation Pack, G., Garrett, G., Wong, L. & Lamm, G. (1993). The effect of a variable dielectric coefficient and finite ion size on Poisson–Boltzmann calculations of DNA–electrolyte systems. Biophys. J. 65, 1363–1370.Google Scholar
First citation Pack, G. R. & Klein, B. J. (1984). The distribution of electrolyte ions around the B- and Z-conformers of DNA. Biopolymers, 23, 2801.Google Scholar
First citation Pack, G. R., Wong, L. & Prasad, C. V. (1986). Counterion distribution around DNA. Nucleic Acids Res. 14, 1479.Google Scholar
First citation Rashin, A. A. (1990). Hydration phenomena, classical electrostatics and the boundary element method. J. Phys. Chem. 94, 725–733.Google Scholar
First citation Schaeffer, M. & Frommel, C. (1990). A precise analytical method for calculating the electrostatic energy of macromolecules in aqueous solution. J. Mol. Biol. 216, 1045–1066.Google Scholar
First citation Still, C., Tempczyk, A., Hawley, R. & Hendrickson, T. (1990). Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127–6129.Google Scholar
First citation Warwicker, J. & Watson, H. C. (1982). Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J. Mol. Biol. 157, 671–679.Google Scholar
First citation Yoon, L. & Lenhoff, A. (1992). Computation of the electrostatic interaction energy between a protein and a charged suface. J. Phys. Chem. 96, 3130–3134.Google Scholar
First citation Zauhar, R. & Morgan, R. J. (1985). A new method for computing the macromolecular electric potential. J. Mol. Biol. 186, 815–820.Google Scholar








































to end of page
to top of page