International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 24.4, p. 671   | 1 | 2 |

Section 24.4.6. Crystallization screens

G. L. Gilliland,a* M. Tunga and J. E. Ladnera

aCenter for Advanced Research in Biotechnology of the Maryland Biotechnology Institute and National Institute of Standards and Technology, 9600 Gudelsky Dr., Rockville, MD 20850, USA
Correspondence e-mail:  gary.gilliland@nist.gov

24.4.6. Crystallization screens

| top | pdf |

With the introduction of the fast screen by Jancarik & Kim (1991)[link], almost all attempts to crystallize a protein begin with experiments based on a screen of one form or another. The first screen was based on the ideas put forth by Carter & Carter (1979)[link] in their discussion of the use of incomplete factorial experiments to limit the search, the experience of the investigators themselves, and the experience of others. A number of screens have been developed and even commercialized (e.g. Cudney et al., 1994[link]). The first screens were quite general and applicable to a wide range of biological macromolecules, but fast screens based on specific classes of molecules such as RNA soon developed (Scott et al., 1995[link]).

The BMCD is an ideal tool for facilitating the development of screens for general or specific classes of macromolecules. For example, if it were desired to produce a screen for endonucleases, a quick search of the PDB would provide the information in Table 24.4.6.1[link]. An examination of the crystallization conditions of the endonucleases reveals that crystals are grown using a protein concentration ranging from 2.5 to 12.9 mg ml−1, ammonium sulfate, sodium phosphate, or polyethylene glycol 400 to 8000 as precipitants at 4 to 20 °C between pH 4.5 and 8.3. A variety of buffers and standard biochemical additives are also used. From an examination of these parameters, a small subset of the crystallization experiments comprising an endonuclease screen could be developed.

Table 24.4.6.1| top | pdf |
Crystallization conditions for endonucleases

EndonucleaseCrystal data (space group, unit cell)Crystallization methodProtein concentration (mg ml−1)Chemical additives to reservoirpHT (°C)Reference(s)
BamHIC2 76.4, 46.0, 69.4 Å, 110.5°Vapour diffusion with microseeding12.510% Glycerol, 0.02 M potassium phosphate, 12% polyethylene glycol 8K6.920Newman et al. (1994)[link]
BamHI:12bp DNA[P2_{1}2_{1}2_{1}] 108.8, 81.9, 68.8 ÅVapour diffusion10.85% Glycerol, 12% polyethylene glycol 8K, 0.15 M potassium chloride6.9–7.622–24Strzelecka et al. (1994)[link]
Crf10I, type II restriction I222 64.5, 81.3, 119.7 ÅVapour diffusion6.01.0 M Ammonium acetate, 0.075 M MES6.5–7.520Bozic et al. (1996)[link]
EcoRV, type II restriction[P2_{1}2_{1}2_{1}] 58.2, 71.7, 136.0 ÅVapour diffusion3.3–5.30.18 M Sodium chloride, 10% polyethylene glycol 4K7.0–7.820–24D'Arcy et al. (1985)[link]; Winkler et al. (1993)[link]
EcoRV, type II restriction:11-mer DNAP1 49.4, 50.2, 64.0 Å, 96.5, 109.1, 108.1°Batch6.4–12.90.0043 M Phosphate buffer, 0.1073 M sodium chloride, 0.00040 M EDTA, 0.00040 M dithiothreitol, 0.0043 M cacodylate, 0.8–1.4% polyethylene glycol 4K6.0–7.522–24Kostrewa & Winkler (1995)[link]
EcoRV, type II restriction:cognate DNA[C222_{1}] 60.2, 78.4, 371.3 ÅVapour diffusionn/a0.1 M Sodium phosphate, 0.08 M sodium chloride6.4–6.919–22Winkler et al. (1991[link], 1993[link])
EcoRV, type II restriction:non-cognate DNA[P2_{1}] 68.4, 79.6, 6.4 Å, 104.6°Vapour diffusion7.0–10.00.1 M Sodium chloride, 0.02 M MES6.4–6.919–22Winkler et al. (1991[link], 1993[link])
EcoRV, type II restriction:product DNAP1 49.3, 50.3, 63.9 Å, 96.7, 108.8, 108.4°Microbatch6.40.0043 M Phosphate buffer, 0.1073 M sodium chloride, 0.0004 M EDTA, 0.0004 M dithiothreitol, 0.0043 M cacodylate, 1–2% polyethylene glycol 4K, 0.0043 M magnesium chloride6.0–7.54–22Kostrewa & Winkler (1995)[link]
II, DNA repair [4Fe–4S][P2_{1}2_{1}2_{1}] 48.5, 65.8, 86.8 ÅDialysis and macroseedingn/a5.0% Glycerol, 0.0003 M sodium azide, 0.1 M sodium chloride, 0.005 M HEPES7.015Kuo, McRee, Cunningham & Tainer (1992)[link]; Kuo, McRee, Fisher et al. (1992)[link]
PvuII[P2_{1}2_{1}2] 84.2, 106.2, 46.9 ÅVapour diffusion2.520–50% Saturated ammonium sulfate5.018Athanasiadis & Kokkinidis (1991)[link]
PuvII:cognate DNA[P2_{1}2_{1}2_{1}] 95.8, 86.3, 48.5 ÅVapour diffusion9.60.0001 M EDTA, 2.5–3.6% polyethylene glycol 4K, 0.0155–0.0225 M sodium acetate4.516Balendiran et al. (1994)[link]
RuvC specific for Holliday junctions[P2_{1}] 72.8, 139.6, 32.4 Å, 93.0°Microdialysis8.00.05 M TrisHCl, 7.5% glycerol, 0.001 M EDTA, 0.001 M dithiothreitol, 0.3–0.4 M sodium cloride8.022–24Ariyoshi et al. (1994)[link]
V, mutant E23Q[P2_{1}] 41.4, 40.1, 37.4 Å, 90.4°Vapour diffusion10.00.05 M Potassium chloride, 0.008 M sodium cacodylate, 15% polyethylene glycol 4004.5–8.04Morikawa et al. (1995)[link]
V, mutant R3Q[P2_{1}] 41.4, 40.7, 37.4 Å, 90.1°Vapour diffusion10.00.05 M Potassium chloride, 0.008 M sodium cacodylate, 15% polyethylene glycol 4004.5–8.04Morikawa et al. (1995)[link]
V[P2_{1}] 41.4, 40.1, 37.6 Å, 90.01°Vapour diffusion10.00.05 M Potassium chloride, 0.008 M sodium cacodylate, 15% polyethylene glycol 4004.54Morikawa et al. (1988[link], 1992[link], 1995[link])
V, mutant E23D[P2_{1}] 41.7, 40.2, 37.1 Å, 92°Vapour diffusion10.00.05 M Potassium chloride, 0.008 M sodium cacodylate, 15% polyethylene glycol 4004.5–8.04Morikawa et al. (1995)[link]
Sm1[P2_{1}2_{1}2_{1}] 69.0, 106.7, 74.8 ÅVapour diffusion10.00.01 M TrisHCl, 1.2–1.6 M ammonium sulfate8.34Bannikova et al. (1991)[link]
Extracellular[P2_{1}2_{1}2_{1}] 106.7, 74.5, 68.9 ÅDialysis8.01.0–1.7 M Ammonium sulfate, 0.05 M sodium phosphate6.04Miller et al. (1991)[link]
Restriction, FokI:20pb DNA[P2_{1}] 65.6, 119.3, 71.5 Å, 101.4°Vapour diffusion with macroseeding10.01.1 M Ammonium sulfate, 0.5 M MES, 0.2 M potassium chloride, 0.0005 M dithiothreitol, 0.0005 M EDTA, 5% glycerol6.020Hirsch et al. (1997)[link]; Wah et al. (1997)[link]

References

First citation Carter, C. W. Jr & Carter, C. W. (1979). Protein crystallization using incomplete factorial experiments. J. Biol. Chem. 254, 12219–12223.Google Scholar
First citation Cudney, B., Patel, S., Weisgraber, K., Newhouse, Y. & McPherson, A. (1994). Screening and optimization strategies for macromolecular crystal growth. Acta Cryst. D50, 414–423.Google Scholar
First citation Jancarik, J. & Kim, S.-H. (1991). Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Cryst. 24, 409–411.Google Scholar
First citation Scott, W. G., Finch, J. T., Grenfell, R., Fogg, J., Smith, T., Gait, M. J. & Klug, A. (1995). Rapid crystallization of chemically synthesized hammerhead RNAs using a double screening procedure. J. Mol. Biol. 250, 327–332.Google Scholar








































to end of page
to top of page