International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 25.1, p. 693

Section 25.1.9.1.  GRASP

J. Dinga* and E. Arnoldb

a Biomolecular Crystallography Laboratory, CABM & Rutgers University, 679 Hoes Lane, Piscataway, NJ 08854-5638, USA, and Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Yue-Yang Road, Shanghai 200 031, People's Republic of China, and bBiomolecular Crystallography Laboratory, CABM & Rutgers University, 679 Hoes Lane, Piscataway, NJ 08854-5638, USA
Correspondence e-mail:  ding@cabm.rutgers.edu

25.1.9.1. GRASP

| top | pdf |

GRASP (Nicholls et al., 1991[link]) is a molecular visualization and analysis program. It is particularly useful for the display and manipulation of the surfaces of molecules and their electrostatic properties. Its particular strength compared to other such programs is its facility for surfaces and electrostatics. The program contains extremely rapid algorithms for the construction of rendered molecular surfaces and for solving the Poisson–Boltzmann equation. GRASP's surface can be molecular or accessible and can be colour-coded by electrostatic potential derived from its internal Poisson–Boltzmann solver or external programs such as DelPhi. This representation has become a standard tool in assessing electrostatic character of large, typically protein, molecules. Surfaces can also be coloured by other properties, such as any of those of the underlying atoms (e.g. hydrophobicity) or by its own intrinsic properties, such as local curvature. The program also contains several other unique data-representation forms in addition to standard ones such as ball-and-stick for atoms and bonds, and backbone splines, or `worms', to indicate secondary structure. See Chapter 22.3[link] for more details.

Location: http://honiglab.cpmc.columbia.edu/grasp/ . Operating system: IRIX. Type: binary. Distribution: commercial.

References

First citation Nicholls, A., Sharp, K. & Honig, B. (1991). Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins, 11, 281–296.Google Scholar








































to end of page
to top of page