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minimization, and also after molecular-
dynamics simulated annealing.

25.2.3.10. Conclusions

CNS is a general system for structure
determination by X-ray crystallography
and solution NMR. It covers the whole
spectrum of methods used to solve X-ray
or solution NMR structures. The multi-
layer architecture allows use of the system
with different levels of expertise. The
HTML interface allows the novice to
perform standard tasks. The interface
provides a convenient means of editing
complicated task files, even for the expert
(Fig. 25.2.3.10). This graphical interface
makes it less likely that an important
parameter will be overlooked when editing
the file. In addition, the graphical interface
can be used with any task file, not just the
standard distributed ones. HTML-based
documentation and graphical output is
planned in the future.

Most operations within a crystallo-
graphic algorithm are defined through
modules and task files. This allows for
the development of new algorithms and for

Conversion from
task file to HTML form

Distributed task files

Fig. 25.2.3.10. Use of the CNS HTML form page interface, emphasizing the correspondence between

input fields in the form page and parameters in the task file.

validated o, estimates, determines the weighting scheme between
the X-ray refinement target function and the geometric energy
function (Briinger et al., 1989), refines a flat bulk solvent model
(Jiang & Briinger, 1994) and an overall anisotropic B value for the
model by least-squares minimization, and subsequently refines the
atomic positions by simulated annealing. Options are available for
specification of alternate conformations, multiple conformers
(Burling & Briinger, 1994), noncrystallographic symmetry
constraints and restraints (Weis et al., 1990), and ‘flat’ solvent
models (Jiang & Briinger, 1994). Available target functions
include the maximum-likelihood functions MLF, MLI and MLHL
(Pannu & Read, 1996a; Adams et al., 1997; Pannu et al., 1998).
The user can choose between slow cooling (Briinger et al., 1990)
and constant-temperature simulated annealing, and the respective
rate of cooling and length of the annealing scheme. For a review
of simulated annealing in X-ray crystallography, see Briinger et
al. (1997).

During simulated-annealing refinement, the model can be
significantly improved. Therefore, it becomes important to
recalculate the cross-validated o4 error estimates (Kleywegt &
Brunger, 1996; Read, 1997) and the weight between the X-ray
diffraction target function and the geometric energy function in the
course of the refinement (Adams et al., 1997). This is important for
the maximum-likelihood target functions that depend on the cross-
validated o4 error estimates. In the simulated-annealing task file,
the recalculation of o4 values and subsequently the weight for the
crystallographic energy term are carried out after initial energy

existing algorithms to be precisely defined
and easily modified without the need for
source-code modifications.

The hierarchical structure of CNS
allows extensive testing at each level. For
example, once the source code and CNS
basic commands have been tested, testing
of the modules and task files is performed.
A test suite consisting of more than a
hundred test cases is frequently evaluated
during CNS development in order to detect
and correct programming errors. Furthermore, this suite is run on
several hardware platforms in order to detect any machine-specific
errors. This testing scheme makes CNS highly reliable.

Algorithms can be readily understood by inspecting the modules
or task files. This self-documenting feature of the modules provides
a powerful teaching tool. Users can easily interpret an algorithm and
compare it with published methods in the literature. To our
knowledge, CNS is the only system that enables one to define
symbolically any target function for a broad range of applications,
from heavy-atom phasing or molecular-replacement searches to
atomic resolution refinement.

25.2.4. The TNT refinement package
(D. E. TRONRUD AND L. F. TEN EYCK)

25.2.4.1. Scope and function of the package

TNT (Tronrud et al., 1987) is a computer program package that
optimizes the parameters of a molecular model given a set of
observations and indicates the location of errors that it cannot
correct. Its authors presume the principal set of observations to be
the structure factors observed in a single-crystal diffraction
experiment. To complement such a data set, which for most
macromolecules has limitations, stereochemical restraints such as
standard bond lengths and angles are also used as observations.

A molecule is parameterized as a set of atoms, each with a
position in space, an isotropic B factor and an occupancy. The
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complete model also includes an overall scale factor, which
converts the arbitrary units of the measured structure factors to

e A, and a two-parameter model of the electron density of the bulk
solvent.

Because a TNT model of a macromolecule does not allow
anisotropic B factors, TNT cannot be used to finish the refinement of
any structure that diffracts to high enough resolution to justify the
use of these parameters. If one has a crystal that diffracts to 1.4 A or
better, the final model should probably include these parameters and
TNT cannot be used. One may still use 7NT in the early stages of
such a refinement because one usually begins with only isotropic
B’s.

At the other extreme of resolution, 7NT begins to break down
with data sets limited to only about 3.5 A data. This breakdown
occurs for two reasons. First, at 3.5 A resolution, the maps can no
longer resolve (-sheet strands or a-helices. The refinement of a
model against data of such low resolution requires strong restraints
on dihedral angles and hydrogen bonds — tasks for which TNT is not
well suited. Second, the errors in an initial model constructed with
only 3.5 A data are usually of such a magnitude and quality that the
function minimizer in TNT cannot correct them.

25.2.4.2. Historical context

The design of TNT began in the late 1970s, and the first
publishable models were generated by TNT in 1981 (Holmes &
Matthews, 1981). Its design was greatly influenced by observations
of the strength and weaknesses of programs then available.

The first refinement of a protein model was performed by Jensen
and co-workers at the University of Washington (Watenpaugh et
al., 1973). This structure refinement was atypical because of the
availability of high-resolution data. The techniques of pre-least-
squares small-molecule refinement were simply applied to this
much larger model. Since many of the calculations were performed
manually, no comprehensive software package was created for
distribution.

It was quickly realized that for macromolecular refinement to
become common, the calculations had to be fully automated and
ideal stereochemistry had to be enforced. In the late 1970s, four
programs became available, all of which automated the refinement
calculations, but each implemented the enforcement of stereo-
chemistry in different ways. They were PROLSQ (Hendrickson &
Konnert, 1980), EREF (Jack & Levitt, 1978), CORELS (Sussman et
al., 1977) and FFTSF (Agarwal, 1978). PROLSQ was, ultimately,
the most popular.

At one end of the spectrum lay FFTSF. This program optimized
its models to the diffraction data while completely ignoring ideal
geometry. Following a number of iterations of optimizing the fit of
the model to the structure factors, the geometry was idealized by
running a separate program. At the other extreme was CORELS. It
optimized its models to the diffraction data while allowing no
deviations from ideal stereochemistry. The model was allowed to
change only through the rotation of single bonds and the movement
of rigid groups. Both approaches were frustrating to a certain extent.
With FFTSF it was a struggle to find a model that agreed with all
observations at once. With CORELS it was difficult to get the model
to fit the density, because small and, apparently, insignificant
deviations from ideality often added up after many residues to large
and significant displacements, and these were forbidden. Neither
approach to stereochemistry seemed very convenient, although
CORELS was used for early-stage refinement for many years
because of its exceptional radius of convergence.

Both PROLSQ and EREF enforced ideal stereochemistry and
agreement with the diffraction data simultaneously. This strategy
proved very convenient and generated models that satisfied their
users. The two programs differed significantly in the form in which

they required the ideal values be entered. PROLSQ required that the
ideal values for both bond lengths and bond angles be entered as
distances, e.g. an angle was defined by the distance between the two
extreme atoms. EREF required that the standard value for an angle
simply be entered as the number of degrees. Since EREF stored its
library of standard values in the same terms as those with which
people were familiar, it was much easier to enter the values.

These two programs differed in another way as well. PROLSQ
stored ideal values for the stereochemistry of each type of residue
(e.g. alanine, glycine efc.), while EREF parameterized the library in
terms of atom types. For example, the angle formed by three atoms,
the first a keto oxygen, the second a carbonyl carbon and the third an
amide nitrogen, would have a particular ideal value regardless of
where these three atoms occurred. In this matter, PROLSQ was
more similar to the thought patterns of crystallographers.

25.2.4.3. Design principles

TNT was designed with three fundamental principles in mind.
Each principle has a number of consequences that shaped the
ultimate form of the package.

25.2.4.3.1. Refinement should be simple to run

The user should not be burdened with the choice of input
parameters that they may not be qualified to choose. They also
should not be forced to construct an input file that is obscure and
difficult to understand. It is hard now to remember what most
computer programs were like in the 1970s. Usually, the input to the
program was a block of numbers and flags where the meaning of
each item was defined by its line and column numbers. This block
not only contained information the programmer could never
anticipate, like the cell constants, but defined how the computer’s
memory should be allocated and obscure parameters that could only
be estimated after careful reading of research papers.

TNT was one of the first programs in crystallography to have its
input introduced with keywords and to allow input statements to
come in any order. As an example of the difference, consider the
resolution limits. Usually, a crystallographic program would have a
line in its input similar to

99.0, 1.9,

One had to recognize this line amongst many as the line containing
the resolution limits. (In many programs, a value of 99 was used to
indicate that no lower-resolution limit was to be applied.) In TNT
the same data would be entered as

RESOLUTION 1.9

The keyword identifies the data as the resolution limit(s). If the
statement contained two numbers, they were considered the upper
and lower limits of the diffraction data.

The preceding example also shows how default values can be
implemented by a program much more safely with keyword-based
input. In the previous scheme, if a value was ever to be changed by
the user, its place had to be allocated in the input block. This often
left numbers floating in the block which were almost never changed,
and because they were so infrequently referred to, they were usually
unrecognized by the user. It was quite possible for one of these
numbers to be accidentally changed and the error unnoticed for
quite some time. When the data are introduced with keywords, a
data item is not mentioned if the default value is suitable.

25.2.4.3.2. Refinement should run quickly and use as little
memory as possible

The most time-consuming calculations in refinement are the
calculation of structure factors from atomic coordinates and the
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calculation of derivatives of the part of the residual dependent upon
the diffraction data with respect to the atomic parameters. The
quickest means of performing these calculations requires the use of
space-group-optimized fast Fourier transforms (FFTs). The initial
implementation of TNT used FFTs to calculate structure factors, but
the much slower direct summation method to calculate the
derivatives. Within a few years, Agarwal’s method (Agarwal,
1978; Agarwal et al., 1981) was incorporated into TNT and from
then on all crystallographic calculations were performed with FFTs.

The FFT programs of Ten Eyck (1973, 1977) made very efficient
use of computer memory. Another means of saving memory was to
recognize that the code for calculating stereochemical restraints did
not need to be in the memory when the crystallographic calculations
were being performed and vice versa. There were two ways to save
memory using this information. One could create a series of
‘overlays’ or one could break the calculation into a series of
separate programs. The means for defining an overlay structure
were never standardized and could not be ported from one type of
computer to another and were, therefore, never attempted in 7NT.
For this reason, and a number of others mentioned here, TNT'is not a
single program but a collection of programs, each with a well
defined and specialized purpose.

25.2.4.3.3. The source code should not require
customization for each project

The need to state this goal seems remarkable in these modern
times, but the truth is that most computer programs in the 1970s
required specific customizations before they could be used. The
simplest modifications were the definitions of the maximum number
of atoms, residues, atom types efc. accepted by the program. These
modifications are still required in Fortran77 programs because that
language does not allow the dynamic allocation of memory.
However, in most programs today the limits are set high enough
that the standard configuration does not present a problem.

The most difficult modification required for programs like
PROLSQ was to adapt the calculations to the space group in
hand. Their authors usually included code for the space groups they
were particularly interested in, leaving all others to be implemented
by the user. Writing code for a new space group was often a
daunting task for someone who was not an expert programmer and
had no tools for testing the modifications.

It is too burdensome to require the user to understand sufficiently
the internal workings of a complex calculation that they can code
and debug central subroutines of a refinement program. In its initial
implementation, TNT avoided this problem, to an extent, by
performing the space-group-specific calculations in separate
programs. At least the user did not need to modify an existing
program. All that was required was the construction of a program
that read the proper format file, performed the calculation and wrote
its answer in the proper format. The user was required to supply
both a program that could calculate structure factors from the model
and another program that could calculate the derivative of the
diffraction component of the residual function with respect to the
atomic parameters of the model.

While a structure-factor program could usually be located, either
by finding an existing program or by expanding the model to a
lower-symmetry space group for which a program did exist, the
requirement of creating a derivative program proved too great a
burden. The derivation of the space-group-specific calculation, its
implementation and debugging proved too difficult for almost
everyone, and this design was quickly abandoned. Instead, an
implementation of Agarwal’s (1978) algorithm was created. In this
method, the derivatives are calculated with a series of convolutions
with an F,, — F. map. The calculation of the map is the only space-
group-specific part of the calculation, and this was done with a

separate program for calculating Fourier syntheses. Such programs
were as easy to come by as structure-factor calculation programs
and could be replaced by a lower-symmetry program if required.

While it is easier to find or write a program that only calculates a
Fourier transform and much easier to debug one than to debug a
modification to a larger and more complex program, it is still
difficult. The lack of availability of programs for the space group of
a crystal often prevented the use of TNT. Over time, programs for
more space groups were written and distributed with 7NT.
Eventually, a method was developed by one of TNT’s authors in
which FFTs could be calculated using a single program as
efficiently as the original space-group-specific programs. Once
this program existed, there was no longer the need for isolated
structure-factor and Fourier synthesis programs. These calculations
have disappeared into the heart of TNT, and TNT consists of many
fewer programs today than in the past.

25.2.4.4. Current structure of the package

TNT presents different faces to different users. Some users
simply want to run refinement; they see the shell interface. Others
want to use the TNT programs in untraditional ways; they see the
program interface. A few users want to change the basic
calculations of TNT; they see the library interface.

The shell interface is the view of TNT that most people see. It is
the most recent structural addition, having been added in release SE
in 1995. At this level, the restraints, weights and parameters of the
model are described in the ‘TNT control file’ and the user performs
particular calculations by giving commands at the shell prompt. For
example, refinement is performed with the ‘tnt’ command and maps
are calculated for examination with some graphics program with the
‘make_maps’ command. TNT is supplied with about two dozen
shell commands. These commands allow the running of refinement,
the conversion of the model to and from TNT"s internal format, and
the examination of the model to locate potential problem spots. The
TNT Users’ Guide describes the use of TNT at this level.

The program interface consists of the individual TNT programs
along with their individual capabilities. TNT consists of the program
Shift, which handles all the minimization calculations, a program
for each module (restraints that fall into a common class, e.g.
diffraction data, ideal stereochemistry and noncrystallographic
symmetry) and a number of utility programs of which the most
important member is the program Convert, which reads and writes
coordinate files in many formats. The user can write shell scripts (or
modify those supplied with TNT) to perform a great many tasks that
cannot be accessed with the standard set of scripts. The TNT
Reference Manual describes the operation of each program.

If the programs in TNT do not perform the calculation wanted,
the source code can be modified. The source code to TNT is supplied
with the standard distribution. In order to make the code more
manageable and understandable, it is divided into half a dozen
libraries. All TNT programs use the lowest-level library to ensure
consistency of the ‘look and feel” and use the basic data structures
for storage of the model’s parameters and the vital crystal data. To
add new functionality, one can either modify an existing program,
write a new program using the TNT libraries as a start, or write a
new program from scratch ignoring the TNT libraries. As long as a
program can read and write files of the same format as the rest of
TNT, it will work well with TNT, even if it does not share any code.
A library exists, but is not copyrighted, that contains subroutines to
read and write the crystallographic file formats used by the rest of
TNT.

25.2.4.5. Innovations first introduced in TNT

TNT was not only designed to be an easy-to-use tool for the
refinement of macromolecular models, but also as a tool for testing
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new ideas in refinement. Since its source code is designed to allow
easy reordering of tasks and simple modifications, a number of
innovations in refinement made their first appearance in TNT. These
features include the following.

25.2.4.5.1. Identifying and restraining symmetry-related
contacts (1982)

Without a search for symmetry-related bad contacts, it was quite
common to build atoms into the same density from two different
sides of the molecule. A number of models in the PDB contain these
types of errors because neither the refinement nor the graphics
programs available at that time would indicate this type of error.

25.2.4.5.2. The ability of a single package to perform both
individual atom and rigid-body refinement (1982)

Prior to TNT, one often started a refinement with rigid-body
refinement using CORELS and then switched to another program.
TNT was the first refinement package to allow both styles of
refinement. One was not required to learn about two different
packages when running 7NT.

25.2.4.5.3. Space-group optimized FFTs for all space
groups (1989)

This innovation allowed TNT to run efficiently in all space
groups available to macromolecular crystals.

25.2.4.5.4. Modelling bulk solvent scattering via local
scaling (~1989)

With a simple and quick model of the scattering of the bulk
solvent in the crystal (Tronrud, 1997), the low-resolution data could
be used in refinement for the first time. The inclusion of these data
in the calculation of maps greatly improved their appearance.

25.2.4.5.5. Preconditioned conjugate-gradient
minimization (1990)

This method of minimization (Axelsson & Barker, 1984,
Tronrud, 1992) allows the direct inclusion of the diagonal elements
of the second-derivative matrix and the indirect inclusion of its off-
diagonal elements. An additional benefit is that it allows both
positional parameters and B factors to be optimized in each cycle.
Previously, one was required to hold one class of parameter fixed
while the other was optimized. It is much more efficient and simpler
for the user to optimize all parameters at once. This method,
because it incorporates the diagonal elements directly, produces sets
of B factors that agree with the diffraction data better than those
from the simple conjugate-gradient method.

25.2.4.5.6. Restraining stereochemistry of chemical links
to symmetry-related molecules (~1992)

It is not uncommon for crystallization enhancers to be found on a
special position in the crystal. In addition, cross-linking the
molecules in a crystal is often done for various reasons. In both
cases, the model contains chemical bonds to a molecule or atoms in
another asymmetric unit of the crystal. In order for the
stereochemistry of these links to be properly restrained, it must be
possible to describe such a link to the refinement program.

25.2.4.5.7. Knowledge-based B-factor restraints (~1994)

When the resolution of the diffraction data set is less than about
2 A, the individual B factors of a refined model are observed to vary
wildly from atom to atom, even when the atoms are bonded to one
another. This pattern is not reasonable if one interprets the B factor

as a measure of the vibrational motion of the atom. Traditionally,
one applies an additional restraint on the B factors of the model,
where the ideal value for the difference in B factor for two bonded
atoms is zero.

Since it is clear from examinations of higher-resolution models
that the B factors generally increase from one side of a bond to the
other (e.g. moving from the main chain to the end of a side chain),
the traditional restraint is flawed. A restraint library was generated
(Tronrud, 1996) where each bond in a residue is assigned a
preferred increment in B factor and a confidence (standard
deviation) in that increment.

25.2.4.5.8. Block-diagonal preconditioned conjugate-
gradient minimization with pseudoinverses (1998)

With this enhancement, TNT’s minimizer treats the second-
derivative matrix as a collection of 5 x 5 element blocks along its
diagonal, one block for each atom. While this method improves the
rate of convergence for noncrystallographic symmetry restraints, its
most significant feature is that it allows the refinement of atoms
located on special positions without special handling by the user.

25.2.4.5.9. Generalization of noncrystallographic
symmetry operators to include shifts in the average B
factor (1998)

It is rather common in crystals containing multiple copies of a
molecule in the asymmetric unit for one or more molecules to have
a higher B factor than the others. If the transformation that generates
each copy of the molecule consists only of a rotation and translation
of the positions of the atoms, the difference in B factors cannot be
modelled. The transformations used in TNT now consist of a
rotation, translation, a B-factor shift and an occupancy shift.

25.2.4.6. TNT as a research tool

TNT was intended not only as a tool for performing refinement,
but as a tool for developing new ideas in refinement. While most of
the latter has been done by TNT’ s authors, several others have made
good use of TNT in this fashion. If one has an idea to test, the
overhead of writing an entire refinement package to perform that
test is overwhelming. TNT allows modification at a number of
levels, so one can choose to work at the level that allows the easiest
implementation of the idea. Several examples follow.

25.2.4.6.1. Michael Chapman’s real-space refinement
package

At Florida State University, Chapman has implemented a real-
space refinement package, principally intended for the refinement of
virus models, using TNT. He was able to use TNT"s minimizer and
stereochemical restraints unchanged along with programs he
developed to implement his method. More information about this
package can be found at http://www.sb.fsu.edu/~rsref.

25.2.4.6.2. Gerard Bricogne’s Buster refinement package

Bricogne & Irwin (1996) have developed a maximum-likelihood
refinement package using TNT. Not only are TNT"s minimizer and
stereochemical restraints used, but many of the calculations of the
maximum-likelihood residual’s derivatives are performed using
TNT programs. While Bricogne and co-workers have not needed to
modify TNT programs to implement their ideas, there is ongoing
collaboration between them and TNT’s authors on the development
of commands that allow access to some previously internal
calculations. More information about Buster can be found at
http://lagrange.mrc-lmb.cam.ac.uk/.
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25.2.4.6.3. Randy Read’s maximum-Ilikelihood function

When Navraj Pannu wanted to implement Read’s maximum-
likelihood refinement functions (Pannu & Read, 1996b) in TNT, he
choose not to implement it as a separate program, but modified
TNT s source code to create a new version of the program Rfactor,
named Maxfactor.

25.2.4.6.4. J. P. Abrahams’ likelihood-weighted
noncrystallographic symmetry restraints

Abrahams (1996) conceived the idea that because some amino-
acid side chains can be expected to violate the noncrystallographic
symmetry (NCS) of the crystal more than others, one could develop
a library of the relative strength with which each atom of each
residue type would be held by the NCS restraint. He chose to
determine these strengths from the average of the current agreement
to the NCS of all residues of the same type. For example, if the
lysine side chains do not agree well with their NCS mates, the NCS
will be loosely enforced for those side chains. On the other hand, if
almost all the valine side chains agree well with their mates, then
the NCS will be strongly enforced for the few that do not agree well.

He chose to implement this idea by modifying the source code for
the TNT program NCS. Since the calculations involved in
implementing this idea are simple, the extent of the modifications
were not large.

25.2.5. The ARP/wARP suite for automated construction
and refinement of protein models (V. S. LAMZIN,
A. PERRAKIS AND K. S. WILSON)

25.2.5.1. Refinement and model building are two sides of
modelling a structure

The conventional view of crystallographic refinement of
macromolecules is the optimization of the parameters of a model
to fit both the experimental data and a set of a priori stereochemical
observations. The user provides the model and, although the values
of its parameters are allowed to vary during the minimization
cycles, the presence of the atoms is fixed, i.e. the addition or
removal of parts of the model is not allowed. As a result, users are
often faced with a situation where several atoms lie in one place,
while the density maps suggest an entirely different location.
Manual intervention, consisting of moving atoms to a more
appropriate place using molecular graphics, density maps and
geometrical assumptions can solve the problem and allow
refinement to proceed further.

The Automated Refinement Procedure (ARP; Fig. 25.2.5.1)
(Lamzin & Wilson, 1993, 1997; Perrakis et al., 1999) challenges
this classical view by addition of real-space manipulation of the
model, mimicking user intervention in silica. Adding and/or
deleting atoms (model update) and complete re-evaluation of the
model to create a new one that better describes the electron density
(model reconstruction) can achieve this aim.

25.2.5.1.1. Model update

The quickest way to change the position of an atom substantially
is not to move it, but rather involves a two-step procedure to remove
it from its current (probably wrong) site and to add a new atom at a
new (hopefully right) position. Such updating of the model does not
imply that all rejected atoms are immediately repositioned in a new
site, so the number of atoms to be added does not have to be equal to
the number rejected.

Atom rejection in ARP is primarily based on the interpolated
2mF, — AF, or 3F, — 2F, electron density at its atomic centre and
the agreement of the atomic density distribution with a target shape.

C MIR(AS)/MAD/DM phases )

Pseudo m()de]
/\RP/VLARP douk sequence (

ARP/nARPamolrace <_ ARP/WARPupddIe

Model

Sl lrlmg model

Rccupmcal space
minimization

ARPIwARP averaging of
multiple refinements

Dermty maps

Fig. 25.2.5.1. A flow chart of the Automated Refinement Procedure.

Applied together, these criteria offer powerful means of identifying
incorrectly placed atoms, but can suggest false positives. However,
a correctly located atom that happens to be rejected should be
selected again and put back in the model. Developments of further,
perhaps more elegant, criteria may be expected in the future
development of the technique.

Atom addition uses the difference mF, — AF, or F, — F.. Fourier
synthesis. The selection is based on grid points rather than peaks, as
the latter are often poorly defined and may overlap with
neighbouring peaks or existing atoms, especially if the resolution
and phases are poor. The map grid point with the highest electron
density satisfying the defined distance constraints is selected as a
new atom, grid points within a defined radius around this atom are
rejected and the next highest grid point is selected. This is iterated
until the desired number of new atoms is found and reciprocal-space
minimization is used to optimize the new atomic parameters.

Real-space refinement based on density shape analysis around an
atom can be used for the definition of the optimum atomic position.
Atoms are moved to the centre of the peak using a target function
that differs from that employed in reciprocal-space minimization.
The function used is the sphericity of the site, which keeps an atom
in the centre of the density cloud but has little influence on the R
factor and phase quality. It is only applicable for well separated
atoms and is mainly used for solvent atoms at high resolution.

Geometrical constraints are based on a priori chemical know-
ledge of the distances between covalently linked carbon, nitrogen
and oxygen atoms (1.2 to 1.6 A) and hydrogen-bonded atoms (2.2 to
3.3 A). Such constraints are applied in rejection and addition of
atoms.

25.2.5.1.2. Model reconstruction

The main problem in automatically reconstructing a protein
model from electron-density maps is in achieving an initial tracing
of the polypeptide chain, even if the result is only partially
complete. Subsequent building of side chains and filling of possible
gaps is a relatively straightforward task. The complexity of the
autotracing can be nicely illustrated as the well known travelling-
salesman problem. Suppose one is faced with 100 trial peptide units
possessing two incoming and two outgoing connections on average,
which is close to what happens in a typical ARP refinement of a
10 kDa protein. Assuming that one of the chain ends is known and
that it is possible to connect all the points regardless of the chosen
route, then one is faced with the problem of choosing the best chain
out of 2%, In practice, the situation is even more complex, as not all
trial peptides are necessarily correctly identified in the first iteration
and some may be missing — analogous to the correctness or
incorrectness of the atomic positions described above.

If the connections can be assigned a probability of the peptide
being correct, then only the path that visits each node exactly once
and maximizes the total probability remains to be identified.
Automatic density-map interpretation is based on the location of
the atoms in the current model and consists of several steps. Firstly,
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